// Copyright 2021 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.
// Package nistec implements the NIST P elliptic curves from FIPS 186-4.//// This package uses fiat-crypto for its backend field arithmetic (not math/big)// and exposes constant-time, heap allocation-free, byte slice-based safe APIs.// Group operations use modern and safe complete addition formulas. The point at// infinity is handled and encoded according to SEC 1, Version 2.0, and invalid// curve points can't be represented.
package nistecimport ()varp521B, _ = new(fiat.P521Element).SetBytes([]byte{0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, 0x9a, 0x1f, 0x92, 0x9a,0x21, 0xa0, 0xb6, 0x85, 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, 0x09, 0xe1, 0x56, 0x19,0x39, 0x51, 0xec, 0x7e, 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, 0x34, 0xf1, 0xef, 0x45,0x1f, 0xd4, 0x6b, 0x50, 0x3f, 0x00})varp521G, _ = NewP521Point().SetBytes([]byte{0x04,0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, 0xe9, 0xcd, 0x9e, 0x3e,0xcb, 0x66, 0x23, 0x95, 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, 0x3d, 0xba, 0xa1, 0x4b,0x5e, 0x77, 0xef, 0xe7, 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, 0x42, 0x9b, 0xf9, 0x7e,0x7e, 0x31, 0xc2, 0xe5, 0xbd, 0x66, 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78,0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9,0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17,0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40,0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86,0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50})constp521ElementLength = 66// P521Point is a P-521 point. The zero value is NOT valid.typeP521Pointstruct {// The point is represented in projective coordinates (X:Y:Z), // where x = X/Z and y = Y/Z.x, y, z *fiat.P521Element}// NewP521Point returns a new P521Point representing the point at infinity point.func () *P521Point {return &P521Point{x: new(fiat.P521Element),y: new(fiat.P521Element).One(),z: new(fiat.P521Element), }}// NewP521Generator returns a new P521Point set to the canonical generator.func () *P521Point {return (&P521Point{x: new(fiat.P521Element),y: new(fiat.P521Element),z: new(fiat.P521Element), }).Set(p521G)}// Set sets p = q and returns p.func ( *P521Point) ( *P521Point) *P521Point { .x.Set(.x) .y.Set(.y) .z.Set(.z)return}// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on// the curve, it returns nil and an error, and the receiver is unchanged.// Otherwise, it returns p.func ( *P521Point) ( []byte) (*P521Point, error) {switch {// Point at infinity.caselen() == 1 && [0] == 0:return .Set(NewP521Point()), nil// Uncompressed form.caselen() == 1+2*p521ElementLength && [0] == 4: , := new(fiat.P521Element).SetBytes([1 : 1+p521ElementLength])if != nil {returnnil, } , := new(fiat.P521Element).SetBytes([1+p521ElementLength:])if != nil {returnnil, }if := p521CheckOnCurve(, ); != nil {returnnil, } .x.Set() .y.Set() .z.One()return , nil// Compressed formcaselen() == 1+p521ElementLength && [0] == 0:returnnil, errors.New("unimplemented") // TODO(filippo)default:returnnil, errors.New("invalid P521 point encoding") }}func (, *fiat.P521Element) error {// x³ - 3x + b. := new(fiat.P521Element).Square() .Mul(, ) := new(fiat.P521Element).Add(, ) .Add(, ) .Sub(, ) .Add(, p521B)// y² = x³ - 3x + b := new(fiat.P521Element).Square()if .Equal() != 1 {returnerrors.New("P521 point not on curve") }returnnil}// Bytes returns the uncompressed or infinity encoding of p, as specified in// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at// infinity is shorter than all other encodings.func ( *P521Point) () []byte {// This function is outlined to make the allocations inline in the caller // rather than happen on the heap.var [133]bytereturn .bytes(&)}func ( *P521Point) ( *[133]byte) []byte {if .z.IsZero() == 1 {returnappend([:0], 0) } := new(fiat.P521Element).Invert(.z) := new(fiat.P521Element).Mul(.x, ) := new(fiat.P521Element).Mul(.y, ) := append([:0], 4) = append(, .Bytes()...) = append(, .Bytes()...)return}// Add sets q = p1 + p2, and returns q. The points may overlap.func ( *P521Point) (, *P521Point) *P521Point {// Complete addition formula for a = -3 from "Complete addition formulas for // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. := new(fiat.P521Element).Mul(.x, .x) // t0 := X1 * X2 := new(fiat.P521Element).Mul(.y, .y) // t1 := Y1 * Y2 := new(fiat.P521Element).Mul(.z, .z) // t2 := Z1 * Z2 := new(fiat.P521Element).Add(.x, .y) // t3 := X1 + Y1 := new(fiat.P521Element).Add(.x, .y) // t4 := X2 + Y2 .Mul(, ) // t3 := t3 * t4 .Add(, ) // t4 := t0 + t1 .Sub(, ) // t3 := t3 - t4 .Add(.y, .z) // t4 := Y1 + Z1 := new(fiat.P521Element).Add(.y, .z) // X3 := Y2 + Z2 .Mul(, ) // t4 := t4 * X3 .Add(, ) // X3 := t1 + t2 .Sub(, ) // t4 := t4 - X3 .Add(.x, .z) // X3 := X1 + Z1 := new(fiat.P521Element).Add(.x, .z) // Y3 := X2 + Z2 .Mul(, ) // X3 := X3 * Y3 .Add(, ) // Y3 := t0 + t2 .Sub(, ) // Y3 := X3 - Y3 := new(fiat.P521Element).Mul(p521B, ) // Z3 := b * t2 .Sub(, ) // X3 := Y3 - Z3 .Add(, ) // Z3 := X3 + X3 .Add(, ) // X3 := X3 + Z3 .Sub(, ) // Z3 := t1 - X3 .Add(, ) // X3 := t1 + X3 .Mul(p521B, ) // Y3 := b * Y3 .Add(, ) // t1 := t2 + t2 .Add(, ) // t2 := t1 + t2 .Sub(, ) // Y3 := Y3 - t2 .Sub(, ) // Y3 := Y3 - t0 .Add(, ) // t1 := Y3 + Y3 .Add(, ) // Y3 := t1 + Y3 .Add(, ) // t1 := t0 + t0 .Add(, ) // t0 := t1 + t0 .Sub(, ) // t0 := t0 - t2 .Mul(, ) // t1 := t4 * Y3 .Mul(, ) // t2 := t0 * Y3 .Mul(, ) // Y3 := X3 * Z3 .Add(, ) // Y3 := Y3 + t2 .Mul(, ) // X3 := t3 * X3 .Sub(, ) // X3 := X3 - t1 .Mul(, ) // Z3 := t4 * Z3 .Mul(, ) // t1 := t3 * t0 .Add(, ) // Z3 := Z3 + t1 .x.Set() .y.Set() .z.Set()return}// Double sets q = p + p, and returns q. The points may overlap.func ( *P521Point) ( *P521Point) *P521Point {// Complete addition formula for a = -3 from "Complete addition formulas for // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. := new(fiat.P521Element).Square(.x) // t0 := X ^ 2 := new(fiat.P521Element).Square(.y) // t1 := Y ^ 2 := new(fiat.P521Element).Square(.z) // t2 := Z ^ 2 := new(fiat.P521Element).Mul(.x, .y) // t3 := X * Y .Add(, ) // t3 := t3 + t3 := new(fiat.P521Element).Mul(.x, .z) // Z3 := X * Z .Add(, ) // Z3 := Z3 + Z3 := new(fiat.P521Element).Mul(p521B, ) // Y3 := b * t2 .Sub(, ) // Y3 := Y3 - Z3 := new(fiat.P521Element).Add(, ) // X3 := Y3 + Y3 .Add(, ) // Y3 := X3 + Y3 .Sub(, ) // X3 := t1 - Y3 .Add(, ) // Y3 := t1 + Y3 .Mul(, ) // Y3 := X3 * Y3 .Mul(, ) // X3 := X3 * t3 .Add(, ) // t3 := t2 + t2 .Add(, ) // t2 := t2 + t3 .Mul(p521B, ) // Z3 := b * Z3 .Sub(, ) // Z3 := Z3 - t2 .Sub(, ) // Z3 := Z3 - t0 .Add(, ) // t3 := Z3 + Z3 .Add(, ) // Z3 := Z3 + t3 .Add(, ) // t3 := t0 + t0 .Add(, ) // t0 := t3 + t0 .Sub(, ) // t0 := t0 - t2 .Mul(, ) // t0 := t0 * Z3 .Add(, ) // Y3 := Y3 + t0 .Mul(.y, .z) // t0 := Y * Z .Add(, ) // t0 := t0 + t0 .Mul(, ) // Z3 := t0 * Z3 .Sub(, ) // X3 := X3 - Z3 .Mul(, ) // Z3 := t0 * t1 .Add(, ) // Z3 := Z3 + Z3 .Add(, ) // Z3 := Z3 + Z3 .x.Set() .y.Set() .z.Set()return}// Select sets q to p1 if cond == 1, and to p2 if cond == 0.func ( *P521Point) (, *P521Point, int) *P521Point { .x.Select(.x, .x, ) .y.Select(.y, .y, ) .z.Select(.z, .z, )return}// ScalarMult sets p = scalar * q, and returns p.func ( *P521Point) ( *P521Point, []byte) *P521Point {// table holds the first 16 multiples of q. The explicit newP521Point calls // get inlined, letting the allocations live on the stack.var = [16]*P521Point{NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(),NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(),NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(),NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), }for := 1; < 16; ++ { [].Add([-1], ) }// Instead of doing the classic double-and-add chain, we do it with a // four-bit window: we double four times, and then add [0-15]P. := NewP521Point() .Set(NewP521Point())for , := range { .Double() .Double() .Double() .Double()for := uint8(0); < 16; ++ { := subtle.ConstantTimeByteEq(>>4, ) .Select([], , ) } .Add(, ) .Double() .Double() .Double() .Double()for := uint8(0); < 16; ++ { := subtle.ConstantTimeByteEq(&0b1111, ) .Select([], , ) } .Add(, ) }return}
The pages are generated with Goldsv0.4.9. (GOOS=linux GOARCH=amd64)