Source File
keygen.go
Belonging Package
crypto/internal/fips140/rsa
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rsa
import (
)
// GenerateKey generates a new RSA key pair of the given bit size.
// bits must be at least 32.
func ( io.Reader, int) (*PrivateKey, error) {
if < 32 {
return nil, errors.New("rsa: key too small")
}
fips140.RecordApproved()
if < 2048 || %2 == 1 {
fips140.RecordNonApproved()
}
for {
, := randomPrime(, (+1)/2)
if != nil {
return nil,
}
, := randomPrime(, /2)
if != nil {
return nil,
}
, := bigmod.NewModulus()
if != nil {
return nil,
}
, := bigmod.NewModulus()
if != nil {
return nil,
}
if .Nat().ExpandFor().Equal(.Nat()) == 1 {
return nil, errors.New("rsa: generated p == q, random source is broken")
}
, := bigmod.NewModulusProduct(, )
if != nil {
return nil,
}
if .BitLen() != {
return nil, errors.New("rsa: internal error: modulus size incorrect")
}
// d can be safely computed as e⁻¹ mod φ(N) where φ(N) = (p-1)(q-1), and
// indeed that's what both the original RSA paper and the pre-FIPS
// crypto/rsa implementation did.
//
// However, FIPS 186-5, A.1.1(3) requires computing it as e⁻¹ mod λ(N)
// where λ(N) = lcm(p-1, q-1).
//
// This makes d smaller by 1.5 bits on average, which is irrelevant both
// because we exclusively use the CRT for private operations and because
// we use constant time windowed exponentiation. On the other hand, it
// requires computing a GCD of two values that are not coprime, and then
// a division, both complex variable-time operations.
, := totient(, )
if == errDivisorTooLarge {
// The divisor is too large, try again with different primes.
continue
}
if != nil {
return nil,
}
:= bigmod.NewNat().SetUint(65537)
, := bigmod.NewNat().InverseVarTime(, )
if ! {
// This checks that GCD(e, lcm(p-1, q-1)) = 1, which is equivalent
// to checking GCD(e, p-1) = 1 and GCD(e, q-1) = 1 separately in
// FIPS 186-5, Appendix A.1.3, steps 4.5 and 5.6.
//
// We waste a prime by retrying the whole process, since 65537 is
// probably only a factor of one of p-1 or q-1, but the probability
// of this check failing is only 1/65537, so it doesn't matter.
continue
}
if .ExpandFor().Mul(, ).IsOne() == 0 {
return nil, errors.New("rsa: internal error: e*d != 1 mod λ(N)")
}
// FIPS 186-5, A.1.1(3) requires checking that d > 2^(nlen / 2).
//
// The probability of this check failing when d is derived from
// (e, p, q) is roughly
//
// 2^(nlen/2) / 2^nlen = 2^(-nlen/2)
//
// so less than 2⁻¹²⁸ for keys larger than 256 bits.
//
// We still need to check to comply with FIPS 186-5, but knowing it has
// negligible chance of failure we can defer the check to the end of key
// generation and return an error if it fails. See [checkPrivateKey].
return newPrivateKey(, 65537, , , )
}
}
// errDivisorTooLarge is returned by [totient] when gcd(p-1, q-1) is too large.
var errDivisorTooLarge = errors.New("divisor too large")
// totient computes the Carmichael totient function λ(N) = lcm(p-1, q-1).
func (, *bigmod.Modulus) (*bigmod.Modulus, error) {
, := .Nat().SubOne(), .Nat().SubOne()
// lcm(a, b) = a×b / gcd(a, b) = a × (b / gcd(a, b))
// Our GCD requires at least one of the numbers to be odd. For LCM we only
// need to preserve the larger prime power of each prime factor, so we can
// right-shift the number with the fewest trailing zeros until it's odd.
// For odd a, b and m >= n, lcm(a×2ᵐ, b×2ⁿ) = lcm(a×2ᵐ, b).
, := .TrailingZeroBitsVarTime(), .TrailingZeroBitsVarTime()
if < {
= .ShiftRightVarTime()
} else {
= .ShiftRightVarTime()
}
, := bigmod.NewNat().GCDVarTime(, )
if != nil {
return nil,
}
if .IsOdd() == 0 {
return nil, errors.New("rsa: internal error: gcd(a, b) is even")
}
// To avoid implementing multiple-precision division, we just try again if
// the divisor doesn't fit in a single word. This would have a chance of
// 2⁻⁶⁴ on 64-bit platforms, and 2⁻³² on 32-bit platforms, but testing 2⁻⁶⁴
// edge cases is impractical, and we'd rather not behave differently on
// different platforms, so we reject divisors above 2³²-1.
if .BitLenVarTime() > 32 {
return nil, errDivisorTooLarge
}
if .IsZero() == 1 || .Bits()[0] == 0 {
return nil, errors.New("rsa: internal error: gcd(a, b) is zero")
}
if := .DivShortVarTime(.Bits()[0]); != 0 {
return nil, errors.New("rsa: internal error: b is not divisible by gcd(a, b)")
}
return bigmod.NewModulusProduct(.Bytes(), .Bytes())
}
// randomPrime returns a random prime number of the given bit size following
// the process in FIPS 186-5, Appendix A.1.3.
func ( io.Reader, int) ([]byte, error) {
if < 16 {
return nil, errors.New("rsa: prime size must be at least 16 bits")
}
:= make([]byte, (+7)/8)
for {
if := drbg.ReadWithReader(, ); != nil {
return nil,
}
if := len()*8 - ; != 0 {
[0] >>=
}
// Don't let the value be too small: set the most significant two bits.
// Setting the top two bits, rather than just the top bit, means that
// when two of these values are multiplied together, the result isn't
// ever one bit short.
if := len()*8 - ; < 7 {
[0] |= 0b1100_0000 >>
} else {
[0] |= 0b0000_0001
[1] |= 0b1000_0000
}
// Make the value odd since an even number certainly isn't prime.
[len()-1] |= 1
// We don't need to check for p >= √2 × 2^(bits-1) (steps 4.4 and 5.4)
// because we set the top two bits above, so
//
// p > 2^(bits-1) + 2^(bits-2) = 3⁄2 × 2^(bits-1) > √2 × 2^(bits-1)
//
// Step 5.5 requires checking that |p - q| > 2^(nlen/2 - 100).
//
// The probability of |p - q| ≤ k where p and q are uniformly random in
// the range (a, b) is 1 - (b-a-k)^2 / (b-a)^2, so the probability of
// this check failing during key generation is 2⁻⁹⁷.
//
// We still need to check to comply with FIPS 186-5, but knowing it has
// negligible chance of failure we can defer the check to the end of key
// generation and return an error if it fails. See [checkPrivateKey].
if isPrime() {
return , nil
}
}
}
// isPrime runs the Miller-Rabin Probabilistic Primality Test from
// FIPS 186-5, Appendix B.3.1.
//
// w must be a random odd integer greater than three in big-endian order.
// isPrime might return false positives for adversarially chosen values.
//
// isPrime is not constant-time.
func ( []byte) bool {
, := millerRabinSetup()
if != nil {
// w is zero, one, or even.
return false
}
, := bigmod.NewNat().SetBytes(productOfPrimes, .w)
// If w is too small for productOfPrimes, key generation is
// going to be fast enough anyway.
if == nil {
, := .InverseVarTime(, .w)
if ! {
// productOfPrimes doesn't have an inverse mod w,
// so w is divisible by at least one of the primes.
return false
}
}
// iterations is the number of Miller-Rabin rounds, each with a
// randomly-selected base.
//
// The worst case false positive rate for a single iteration is 1/4 per
// https://eprint.iacr.org/2018/749, so if w were selected adversarially, we
// would need up to 64 iterations to get to a negligible (2⁻¹²⁸) chance of
// false positive.
//
// However, since this function is only used for randomly-selected w in the
// context of RSA key generation, we can use a smaller number of iterations.
// The exact number depends on the size of the prime (and the implied
// security level). See BoringSSL for the full formula.
// https://cs.opensource.google/boringssl/boringssl/+/master:crypto/fipsmodule/bn/prime.c.inc;l=208-283;drc=3a138e43
:= .w.BitLen()
var int
switch {
case >= 3747:
= 3
case >= 1345:
= 4
case >= 476:
= 5
case >= 400:
= 6
case >= 347:
= 7
case >= 308:
= 8
case >= 55:
= 27
default:
= 34
}
:= make([]byte, (+7)/8)
for {
drbg.Read()
if := len()*8 - ; != 0 {
[0] >>=
}
, := millerRabinIteration(, )
if != nil {
// b was rejected.
continue
}
if == millerRabinCOMPOSITE {
return false
}
--
if == 0 {
return true
}
}
}
// productOfPrimes is the product of the first 74 primes higher than 2.
//
// The number of primes was selected to be the highest such that the product fit
// in 512 bits, so to be usable for 1024 bit RSA keys.
//
// Higher values cause fewer Miller-Rabin tests of composites (nothing can help
// with the final test on the actual prime) but make InverseVarTime take longer.
var productOfPrimes = []byte{
0x10, 0x6a, 0xa9, 0xfb, 0x76, 0x46, 0xfa, 0x6e, 0xb0, 0x81, 0x3c, 0x28, 0xc5, 0xd5, 0xf0, 0x9f,
0x07, 0x7e, 0xc3, 0xba, 0x23, 0x8b, 0xfb, 0x99, 0xc1, 0xb6, 0x31, 0xa2, 0x03, 0xe8, 0x11, 0x87,
0x23, 0x3d, 0xb1, 0x17, 0xcb, 0xc3, 0x84, 0x05, 0x6e, 0xf0, 0x46, 0x59, 0xa4, 0xa1, 0x1d, 0xe4,
0x9f, 0x7e, 0xcb, 0x29, 0xba, 0xda, 0x8f, 0x98, 0x0d, 0xec, 0xec, 0xe9, 0x2e, 0x30, 0xc4, 0x8f,
}
type millerRabin struct {
w *bigmod.Modulus
a uint
m []byte
}
// millerRabinSetup prepares state that's reused across multiple iterations of
// the Miller-Rabin test.
func ( []byte) (*millerRabin, error) {
:= &millerRabin{}
// Check that w is odd, and precompute Montgomery parameters.
, := bigmod.NewModulus()
if != nil {
return nil,
}
if .Nat().IsOdd() == 0 {
return nil, errors.New("candidate is even")
}
.w =
// Compute m = (w-1)/2^a, where m is odd.
:= .w.Nat().SubOne(.w)
if .IsZero() == 1 {
return nil, errors.New("candidate is one")
}
.a = .TrailingZeroBitsVarTime()
// Store mr.m as a big-endian byte slice with leading zero bytes removed,
// for use with [bigmod.Nat.Exp].
:= .ShiftRightVarTime(.a)
.m = .Bytes(.w)
for .m[0] == 0 {
.m = .m[1:]
}
return , nil
}
const millerRabinCOMPOSITE = false
const millerRabinPOSSIBLYPRIME = true
func ( *millerRabin, []byte) (bool, error) {
// Reject b ≤ 1 or b ≥ w − 1.
if len() != (.w.BitLen()+7)/8 {
return false, errors.New("incorrect length")
}
:= bigmod.NewNat()
if , := .SetBytes(, .w); != nil {
return false,
}
if .IsZero() == 1 || .IsOne() == 1 || .IsMinusOne(.w) == 1 {
return false, errors.New("out-of-range candidate")
}
// Compute b^(m*2^i) mod w for successive i.
// If b^m mod w = 1, b is a possible prime.
// If b^(m*2^i) mod w = -1 for some 0 <= i < a, b is a possible prime.
// Otherwise b is composite.
// Start by computing and checking b^m mod w (also the i = 0 case).
:= bigmod.NewNat().Exp(, .m, .w)
if .IsOne() == 1 || .IsMinusOne(.w) == 1 {
return millerRabinPOSSIBLYPRIME, nil
}
// Check b^(m*2^i) mod w = -1 for 0 < i < a.
for range .a - 1 {
.Mul(, .w)
if .IsMinusOne(.w) == 1 {
return millerRabinPOSSIBLYPRIME, nil
}
if .IsOne() == 1 {
// Future squaring will not turn z == 1 into -1.
break
}
}
return millerRabinCOMPOSITE, nil
}
The pages are generated with Golds v0.7.6. (GOOS=linux GOARCH=amd64)