// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package cmp

import (
	
	
	
	

	
)

// Option configures for specific behavior of Equal and Diff. In particular,
// the fundamental Option functions (Ignore, Transformer, and Comparer),
// configure how equality is determined.
//
// The fundamental options may be composed with filters (FilterPath and
// FilterValues) to control the scope over which they are applied.
//
// The cmp/cmpopts package provides helper functions for creating options that
// may be used with Equal and Diff.
type Option interface {
	// filter applies all filters and returns the option that remains.
	// Each option may only read s.curPath and call s.callTTBFunc.
	//
	// An Options is returned only if multiple comparers or transformers
	// can apply simultaneously and will only contain values of those types
	// or sub-Options containing values of those types.
	filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption
}

// applicableOption represents the following types:
//
//	Fundamental: ignore | validator | *comparer | *transformer
//	Grouping:    Options
type applicableOption interface {
	Option

	// apply executes the option, which may mutate s or panic.
	apply(s *state, vx, vy reflect.Value)
}

// coreOption represents the following types:
//
//	Fundamental: ignore | validator | *comparer | *transformer
//	Filters:     *pathFilter | *valuesFilter
type coreOption interface {
	Option
	isCore()
}

type core struct{}

func (core) () {}

// Options is a list of Option values that also satisfies the Option interface.
// Helper comparison packages may return an Options value when packing multiple
// Option values into a single Option. When this package processes an Options,
// it will be implicitly expanded into a flat list.
//
// Applying a filter on an Options is equivalent to applying that same filter
// on all individual options held within.
type Options []Option

func ( Options) ( *state,  reflect.Type, ,  reflect.Value) ( applicableOption) {
	for ,  := range  {
		switch  := .filter(, , , ); .(type) {
		case ignore:
			return ignore{} // Only ignore can short-circuit evaluation
		case validator:
			 = validator{} // Takes precedence over comparer or transformer
		case *comparer, *transformer, Options:
			switch .(type) {
			case nil:
				 = 
			case validator:
				// Keep validator
			case *comparer, *transformer, Options:
				 = Options{, } // Conflicting comparers or transformers
			}
		}
	}
	return 
}

func ( Options) ( *state, ,  reflect.Value) {
	const  = "ambiguous set of applicable options"
	const  = "consider using filters to ensure at most one Comparer or Transformer may apply"
	var  []string
	for ,  := range flattenOptions(nil, ) {
		 = append(, fmt.Sprint())
	}
	 := strings.Join(, "\n\t")
	panic(fmt.Sprintf("%s at %#v:\n\t%s\n%s", , .curPath, , ))
}

func ( Options) () string {
	var  []string
	for ,  := range  {
		 = append(, fmt.Sprint())
	}
	return fmt.Sprintf("Options{%s}", strings.Join(, ", "))
}

// FilterPath returns a new Option where opt is only evaluated if filter f
// returns true for the current Path in the value tree.
//
// This filter is called even if a slice element or map entry is missing and
// provides an opportunity to ignore such cases. The filter function must be
// symmetric such that the filter result is identical regardless of whether the
// missing value is from x or y.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
func ( func(Path) bool,  Option) Option {
	if  == nil {
		panic("invalid path filter function")
	}
	if  := normalizeOption();  != nil {
		return &pathFilter{fnc: , opt: }
	}
	return nil
}

type pathFilter struct {
	core
	fnc func(Path) bool
	opt Option
}

func ( pathFilter) ( *state,  reflect.Type, ,  reflect.Value) applicableOption {
	if .fnc(.curPath) {
		return .opt.filter(, , , )
	}
	return nil
}

func ( pathFilter) () string {
	return fmt.Sprintf("FilterPath(%s, %v)", function.NameOf(reflect.ValueOf(.fnc)), .opt)
}

// FilterValues returns a new Option where opt is only evaluated if filter f,
// which is a function of the form "func(T, T) bool", returns true for the
// current pair of values being compared. If either value is invalid or
// the type of the values is not assignable to T, then this filter implicitly
// returns false.
//
// The filter function must be
// symmetric (i.e., agnostic to the order of the inputs) and
// deterministic (i.e., produces the same result when given the same inputs).
// If T is an interface, it is possible that f is called with two values with
// different concrete types that both implement T.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
func ( interface{},  Option) Option {
	 := reflect.ValueOf()
	if !function.IsType(.Type(), function.ValueFilter) || .IsNil() {
		panic(fmt.Sprintf("invalid values filter function: %T", ))
	}
	if  := normalizeOption();  != nil {
		 := &valuesFilter{fnc: , opt: }
		if  := .Type().In(0); .Kind() != reflect.Interface || .NumMethod() > 0 {
			.typ = 
		}
		return 
	}
	return nil
}

type valuesFilter struct {
	core
	typ reflect.Type  // T
	fnc reflect.Value // func(T, T) bool
	opt Option
}

func ( valuesFilter) ( *state,  reflect.Type, ,  reflect.Value) applicableOption {
	if !.IsValid() || !.CanInterface() || !.IsValid() || !.CanInterface() {
		return nil
	}
	if (.typ == nil || .AssignableTo(.typ)) && .callTTBFunc(.fnc, , ) {
		return .opt.filter(, , , )
	}
	return nil
}

func ( valuesFilter) () string {
	return fmt.Sprintf("FilterValues(%s, %v)", function.NameOf(.fnc), .opt)
}

// Ignore is an Option that causes all comparisons to be ignored.
// This value is intended to be combined with FilterPath or FilterValues.
// It is an error to pass an unfiltered Ignore option to Equal.
func () Option { return ignore{} }

type ignore struct{ core }

func (ignore) () bool                                                     { return false }
func (ignore) ( *state,  reflect.Type, ,  reflect.Value) applicableOption { return ignore{} }
func (ignore) ( *state, ,  reflect.Value)                                   { .report(true, reportByIgnore) }
func (ignore) () string                                                       { return "Ignore()" }

// validator is a sentinel Option type to indicate that some options could not
// be evaluated due to unexported fields, missing slice elements, or
// missing map entries. Both values are validator only for unexported fields.
type validator struct{ core }

func (validator) ( *state,  reflect.Type, ,  reflect.Value) applicableOption {
	if !.IsValid() || !.IsValid() {
		return validator{}
	}
	if !.CanInterface() || !.CanInterface() {
		return validator{}
	}
	return nil
}
func (validator) ( *state, ,  reflect.Value) {
	// Implies missing slice element or map entry.
	if !.IsValid() || !.IsValid() {
		.report(.IsValid() == .IsValid(), 0)
		return
	}

	// Unable to Interface implies unexported field without visibility access.
	if !.CanInterface() || !.CanInterface() {
		 := "consider using a custom Comparer; if you control the implementation of type, you can also consider using an Exporter, AllowUnexported, or cmpopts.IgnoreUnexported"
		var  string
		if  := .curPath.Index(-2).Type(); .Name() != "" {
			// Named type with unexported fields.
			 = fmt.Sprintf("%q.%v", .PkgPath(), .Name()) // e.g., "path/to/package".MyType
			if ,  := reflect.New().Interface().(error);  {
				 = "consider using cmpopts.EquateErrors to compare error values"
			}
		} else {
			// Unnamed type with unexported fields. Derive PkgPath from field.
			var  string
			for  := 0;  < .NumField() &&  == ""; ++ {
				 = .Field().PkgPath
			}
			 = fmt.Sprintf("%q.(%v)", , .String()) // e.g., "path/to/package".(struct { a int })
		}
		panic(fmt.Sprintf("cannot handle unexported field at %#v:\n\t%v\n%s", .curPath, , ))
	}

	panic("not reachable")
}

// identRx represents a valid identifier according to the Go specification.
const identRx = `[_\p{L}][_\p{L}\p{N}]*`

var identsRx = regexp.MustCompile(`^` + identRx + `(\.` + identRx + `)*$`)

// Transformer returns an Option that applies a transformation function that
// converts values of a certain type into that of another.
//
// The transformer f must be a function "func(T) R" that converts values of
// type T to those of type R and is implicitly filtered to input values
// assignable to T. The transformer must not mutate T in any way.
//
// To help prevent some cases of infinite recursive cycles applying the
// same transform to the output of itself (e.g., in the case where the
// input and output types are the same), an implicit filter is added such that
// a transformer is applicable only if that exact transformer is not already
// in the tail of the Path since the last non-Transform step.
// For situations where the implicit filter is still insufficient,
// consider using cmpopts.AcyclicTransformer, which adds a filter
// to prevent the transformer from being recursively applied upon itself.
//
// The name is a user provided label that is used as the Transform.Name in the
// transformation PathStep (and eventually shown in the Diff output).
// The name must be a valid identifier or qualified identifier in Go syntax.
// If empty, an arbitrary name is used.
func ( string,  interface{}) Option {
	 := reflect.ValueOf()
	if !function.IsType(.Type(), function.Transformer) || .IsNil() {
		panic(fmt.Sprintf("invalid transformer function: %T", ))
	}
	if  == "" {
		 = function.NameOf()
		if !identsRx.MatchString() {
			 = "λ" // Lambda-symbol as placeholder name
		}
	} else if !identsRx.MatchString() {
		panic(fmt.Sprintf("invalid name: %q", ))
	}
	 := &transformer{name: , fnc: reflect.ValueOf()}
	if  := .Type().In(0); .Kind() != reflect.Interface || .NumMethod() > 0 {
		.typ = 
	}
	return 
}

type transformer struct {
	core
	name string
	typ  reflect.Type  // T
	fnc  reflect.Value // func(T) R
}

func ( *transformer) () bool { return .typ != nil }

func ( *transformer) ( *state,  reflect.Type, ,  reflect.Value) applicableOption {
	for  := len(.curPath) - 1;  >= 0; -- {
		if ,  := .curPath[].(Transform); ! {
			break // Hit most recent non-Transform step
		} else if  == .trans {
			return nil // Cannot directly use same Transform
		}
	}
	if .typ == nil || .AssignableTo(.typ) {
		return 
	}
	return nil
}

func ( *transformer) ( *state, ,  reflect.Value) {
	 := Transform{&transform{pathStep{typ: .fnc.Type().Out(0)}, }}
	 := .callTRFunc(.fnc, , )
	 := .callTRFunc(.fnc, , )
	.vx, .vy = , 
	.compareAny()
}

func ( transformer) () string {
	return fmt.Sprintf("Transformer(%s, %s)", .name, function.NameOf(.fnc))
}

// Comparer returns an Option that determines whether two values are equal
// to each other.
//
// The comparer f must be a function "func(T, T) bool" and is implicitly
// filtered to input values assignable to T. If T is an interface, it is
// possible that f is called with two values of different concrete types that
// both implement T.
//
// The equality function must be:
//   - Symmetric: equal(x, y) == equal(y, x)
//   - Deterministic: equal(x, y) == equal(x, y)
//   - Pure: equal(x, y) does not modify x or y
func ( interface{}) Option {
	 := reflect.ValueOf()
	if !function.IsType(.Type(), function.Equal) || .IsNil() {
		panic(fmt.Sprintf("invalid comparer function: %T", ))
	}
	 := &comparer{fnc: }
	if  := .Type().In(0); .Kind() != reflect.Interface || .NumMethod() > 0 {
		.typ = 
	}
	return 
}

type comparer struct {
	core
	typ reflect.Type  // T
	fnc reflect.Value // func(T, T) bool
}

func ( *comparer) () bool { return .typ != nil }

func ( *comparer) ( *state,  reflect.Type, ,  reflect.Value) applicableOption {
	if .typ == nil || .AssignableTo(.typ) {
		return 
	}
	return nil
}

func ( *comparer) ( *state, ,  reflect.Value) {
	 := .callTTBFunc(.fnc, , )
	.report(, reportByFunc)
}

func ( comparer) () string {
	return fmt.Sprintf("Comparer(%s)", function.NameOf(.fnc))
}

// Exporter returns an Option that specifies whether Equal is allowed to
// introspect into the unexported fields of certain struct types.
//
// Users of this option must understand that comparing on unexported fields
// from external packages is not safe since changes in the internal
// implementation of some external package may cause the result of Equal
// to unexpectedly change. However, it may be valid to use this option on types
// defined in an internal package where the semantic meaning of an unexported
// field is in the control of the user.
//
// In many cases, a custom Comparer should be used instead that defines
// equality as a function of the public API of a type rather than the underlying
// unexported implementation.
//
// For example, the reflect.Type documentation defines equality to be determined
// by the == operator on the interface (essentially performing a shallow pointer
// comparison) and most attempts to compare *regexp.Regexp types are interested
// in only checking that the regular expression strings are equal.
// Both of these are accomplished using Comparers:
//
//	Comparer(func(x, y reflect.Type) bool { return x == y })
//	Comparer(func(x, y *regexp.Regexp) bool { return x.String() == y.String() })
//
// In other cases, the cmpopts.IgnoreUnexported option can be used to ignore
// all unexported fields on specified struct types.
func ( func(reflect.Type) bool) Option {
	if !supportExporters {
		panic("Exporter is not supported on purego builds")
	}
	return exporter()
}

type exporter func(reflect.Type) bool

func (exporter) ( *state,  reflect.Type, ,  reflect.Value) applicableOption {
	panic("not implemented")
}

// AllowUnexported returns an Options that allows Equal to forcibly introspect
// unexported fields of the specified struct types.
//
// See Exporter for the proper use of this option.
func ( ...interface{}) Option {
	 := make(map[reflect.Type]bool)
	for ,  := range  {
		 := reflect.TypeOf()
		if .Kind() != reflect.Struct {
			panic(fmt.Sprintf("invalid struct type: %T", ))
		}
		[] = true
	}
	return exporter(func( reflect.Type) bool { return [] })
}

// Result represents the comparison result for a single node and
// is provided by cmp when calling Report (see Reporter).
type Result struct {
	_     [0]func() // Make Result incomparable
	flags resultFlags
}

// Equal reports whether the node was determined to be equal or not.
// As a special case, ignored nodes are considered equal.
func ( Result) () bool {
	return .flags&(reportEqual|reportByIgnore) != 0
}

// ByIgnore reports whether the node is equal because it was ignored.
// This never reports true if Equal reports false.
func ( Result) () bool {
	return .flags&reportByIgnore != 0
}

// ByMethod reports whether the Equal method determined equality.
func ( Result) () bool {
	return .flags&reportByMethod != 0
}

// ByFunc reports whether a Comparer function determined equality.
func ( Result) () bool {
	return .flags&reportByFunc != 0
}

// ByCycle reports whether a reference cycle was detected.
func ( Result) () bool {
	return .flags&reportByCycle != 0
}

type resultFlags uint

const (
	_ resultFlags = (1 << iota) / 2

	reportEqual
	reportUnequal
	reportByIgnore
	reportByMethod
	reportByFunc
	reportByCycle
)

// Reporter is an Option that can be passed to Equal. When Equal traverses
// the value trees, it calls PushStep as it descends into each node in the
// tree and PopStep as it ascend out of the node. The leaves of the tree are
// either compared (determined to be equal or not equal) or ignored and reported
// as such by calling the Report method.
func ( interface {
	// PushStep is called when a tree-traversal operation is performed.
	// The PathStep itself is only valid until the step is popped.
	// The PathStep.Values are valid for the duration of the entire traversal
	// and must not be mutated.
	//
	// Equal always calls PushStep at the start to provide an operation-less
	// PathStep used to report the root values.
	//
	// Within a slice, the exact set of inserted, removed, or modified elements
	// is unspecified and may change in future implementations.
	// The entries of a map are iterated through in an unspecified order.
	(PathStep)

	// Report is called exactly once on leaf nodes to report whether the
	// comparison identified the node as equal, unequal, or ignored.
	// A leaf node is one that is immediately preceded by and followed by
	// a pair of PushStep and PopStep calls.
	(Result)

	// PopStep ascends back up the value tree.
	// There is always a matching pop call for every push call.
	()
}) Option {
	return reporter{}
}

type reporter struct{ reporterIface }
type reporterIface interface {
	PushStep(PathStep)
	Report(Result)
	PopStep()
}

func (reporter) ( *state,  reflect.Type, ,  reflect.Value) applicableOption {
	panic("not implemented")
}

// normalizeOption normalizes the input options such that all Options groups
// are flattened and groups with a single element are reduced to that element.
// Only coreOptions and Options containing coreOptions are allowed.
func ( Option) Option {
	switch  := flattenOptions(nil, Options{}); len() {
	case 0:
		return nil
	case 1:
		return [0]
	default:
		return 
	}
}

// flattenOptions copies all options in src to dst as a flat list.
// Only coreOptions and Options containing coreOptions are allowed.
func (,  Options) Options {
	for ,  := range  {
		switch opt := .(type) {
		case nil:
			continue
		case Options:
			 = (, )
		case coreOption:
			 = append(, )
		default:
			panic(fmt.Sprintf("invalid option type: %T", ))
		}
	}
	return 
}