Source File
unify.go
Belonging Package
go/types
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type unification.
package types
import (
)
// The unifier maintains two separate sets of type parameters x and y
// which are used to resolve type parameters in the x and y arguments
// provided to the unify call. For unidirectional unification, only
// one of these sets (say x) is provided, and then type parameters are
// only resolved for the x argument passed to unify, not the y argument
// (even if that also contains possibly the same type parameters). This
// is crucial to infer the type parameters of self-recursive calls:
//
// func f[P any](a P) { f(a) }
//
// For the call f(a) we want to infer that the type argument for P is P.
// During unification, the parameter type P must be resolved to the type
// parameter P ("x" side), but the argument type P must be left alone so
// that unification resolves the type parameter P to P.
//
// For bidirectional unification, both sets are provided. This enables
// unification to go from argument to parameter type and vice versa.
// For constraint type inference, we use bidirectional unification
// where both the x and y type parameters are identical. This is done
// by setting up one of them (using init) and then assigning its value
// to the other.
const (
// Upper limit for recursion depth. Used to catch infinite recursions
// due to implementation issues (e.g., see issues #48619, #48656).
unificationDepthLimit = 50
// Whether to panic when unificationDepthLimit is reached. Turn on when
// investigating infinite recursion.
panicAtUnificationDepthLimit = false
// If enableCoreTypeUnification is set, unification will consider
// the core types, if any, of non-local (unbound) type parameters.
enableCoreTypeUnification = true
// If traceInference is set, unification will print a trace of its operation.
// Interpretation of trace:
// x ≡ y attempt to unify types x and y
// p ➞ y type parameter p is set to type y (p is inferred to be y)
// p ⇄ q type parameters p and q match (p is inferred to be q and vice versa)
// x ≢ y types x and y cannot be unified
// [p, q, ...] ➞ [x, y, ...] mapping from type parameters to types
traceInference = false
)
// A unifier maintains the current type parameters for x and y
// and the respective types inferred for each type parameter.
// A unifier is created by calling newUnifier.
type unifier struct {
exact bool
x, y tparamsList // x and y must initialized via tparamsList.init
types []Type // inferred types, shared by x and y
depth int // recursion depth during unification
}
// newUnifier returns a new unifier.
// If exact is set, unification requires unified types to match
// exactly. If exact is not set, a named type's underlying type
// is considered if unification would fail otherwise, and the
// direction of channels is ignored.
// TODO(gri) exact is not set anymore by a caller. Consider removing it.
func ( bool) *unifier {
:= &unifier{exact: }
.x.unifier =
.y.unifier =
return
}
// unify attempts to unify x and y and reports whether it succeeded.
func ( *unifier) (, Type) bool {
return .nify(, , nil)
}
func ( *unifier) ( string, ...interface{}) {
fmt.Println(strings.Repeat(". ", .depth) + sprintf(nil, nil, true, , ...))
}
// A tparamsList describes a list of type parameters and the types inferred for them.
type tparamsList struct {
unifier *unifier
tparams []*TypeParam
// For each tparams element, there is a corresponding type slot index in indices.
// index < 0: unifier.types[-index-1] == nil
// index == 0: no type slot allocated yet
// index > 0: unifier.types[index-1] == typ
// Joined tparams elements share the same type slot and thus have the same index.
// By using a negative index for nil types we don't need to check unifier.types
// to see if we have a type or not.
indices []int // len(d.indices) == len(d.tparams)
}
// String returns a string representation for a tparamsList. For debugging.
func ( *tparamsList) () string {
var bytes.Buffer
:= newTypeWriter(&, nil)
.byte('[')
for , := range .tparams {
if > 0 {
.string(", ")
}
.typ()
.string(": ")
.typ(.at())
}
.byte(']')
return .String()
}
// init initializes d with the given type parameters.
// The type parameters must be in the order in which they appear in their declaration
// (this ensures that the tparams indices match the respective type parameter index).
func ( *tparamsList) ( []*TypeParam) {
if len() == 0 {
return
}
if debug {
for , := range {
assert( == .index)
}
}
.tparams =
.indices = make([]int, len())
}
// join unifies the i'th type parameter of x with the j'th type parameter of y.
// If both type parameters already have a type associated with them and they are
// not joined, join fails and returns false.
func ( *unifier) (, int) bool {
if traceInference {
.tracef("%s ⇄ %s", .x.tparams[], .y.tparams[])
}
:= .x.indices[]
:= .y.indices[]
switch {
case == 0 && == 0:
// Neither type parameter has a type slot associated with them.
// Allocate a new joined nil type slot (negative index).
.types = append(.types, nil)
.x.indices[] = -len(.types)
.y.indices[] = -len(.types)
case == 0:
// The type parameter for x has no type slot yet. Use slot of y.
.x.indices[] =
case == 0:
// The type parameter for y has no type slot yet. Use slot of x.
.y.indices[] =
// Both type parameters have a slot: ti != 0 && tj != 0.
case == :
// Both type parameters already share the same slot. Nothing to do.
break
case > 0 && > 0:
// Both type parameters have (possibly different) inferred types. Cannot join.
// TODO(gri) Should we check if types are identical? Investigate.
return false
case > 0:
// Only the type parameter for x has an inferred type. Use x slot for y.
.y.setIndex(, )
// This case is handled like the default case.
// case tj > 0:
// // Only the type parameter for y has an inferred type. Use y slot for x.
// u.x.setIndex(i, tj)
default:
// Neither type parameter has an inferred type. Use y slot for x
// (or x slot for y, it doesn't matter).
.x.setIndex(, )
}
return true
}
// If typ is a type parameter of d, index returns the type parameter index.
// Otherwise, the result is < 0.
func ( *tparamsList) ( Type) int {
if , := .(*TypeParam); {
return tparamIndex(.tparams, )
}
return -1
}
// If tpar is a type parameter in list, tparamIndex returns the type parameter index.
// Otherwise, the result is < 0. tpar must not be nil.
func ( []*TypeParam, *TypeParam) int {
// Once a type parameter is bound its index is >= 0. However, there are some
// code paths (namely tracing and type hashing) by which it is possible to
// arrive here with a type parameter that has not been bound, hence the check
// for 0 <= i below.
// TODO(rfindley): investigate a better approach for guarding against using
// unbound type parameters.
if := .index; 0 <= && < len() && [] == {
return
}
return -1
}
// setIndex sets the type slot index for the i'th type parameter
// (and all its joined parameters) to tj. The type parameter
// must have a (possibly nil) type slot associated with it.
func ( *tparamsList) (, int) {
:= .indices[]
assert( != 0 && != 0)
for , := range .indices {
if == {
.indices[] =
}
}
}
// at returns the type set for the i'th type parameter; or nil.
func ( *tparamsList) ( int) Type {
if := .indices[]; > 0 {
return .unifier.types[-1]
}
return nil
}
// set sets the type typ for the i'th type parameter;
// typ must not be nil and it must not have been set before.
func ( *tparamsList) ( int, Type) {
assert( != nil)
:= .unifier
if traceInference {
.tracef("%s ➞ %s", .tparams[], )
}
switch := .indices[]; {
case < 0:
.types[--1] =
.setIndex(, -)
case == 0:
.types = append(.types, )
.indices[] = len(.types)
default:
panic("type already set")
}
}
// unknowns returns the number of type parameters for which no type has been set yet.
func ( *tparamsList) () int {
:= 0
for , := range .indices {
if <= 0 {
++
}
}
return
}
// types returns the list of inferred types (via unification) for the type parameters
// described by d, and an index. If all types were inferred, the returned index is < 0.
// Otherwise, it is the index of the first type parameter which couldn't be inferred;
// i.e., for which list[index] is nil.
func ( *tparamsList) () ( []Type, int) {
= make([]Type, len(.tparams))
= -1
for := range .tparams {
:= .at()
[] =
if < 0 && == nil {
=
}
}
return
}
func ( *unifier) (, Type, *ifacePair) bool {
return == || .nify(, , )
}
// nify implements the core unification algorithm which is an
// adapted version of Checker.identical. For changes to that
// code the corresponding changes should be made here.
// Must not be called directly from outside the unifier.
func ( *unifier) (, Type, *ifacePair) ( bool) {
if traceInference {
.tracef("%s ≡ %s", , )
}
// Stop gap for cases where unification fails.
if .depth >= unificationDepthLimit {
if traceInference {
.tracef("depth %d >= %d", .depth, unificationDepthLimit)
}
if panicAtUnificationDepthLimit {
panic("unification reached recursion depth limit")
}
return false
}
.depth++
defer func() {
.depth--
if traceInference && ! {
.tracef("%s ≢ %s", , )
}
}()
if !.exact {
// If exact unification is known to fail because we attempt to
// match a type name against an unnamed type literal, consider
// the underlying type of the named type.
// (We use !hasName to exclude any type with a name, including
// basic types and type parameters; the rest are unamed types.)
if , := .(*Named); != nil && !hasName() {
if traceInference {
.tracef("under %s ≡ %s", , )
}
return .(.under(), , )
} else if , := .(*Named); != nil && !hasName() {
if traceInference {
.tracef("%s ≡ under %s", , )
}
return .(, .under(), )
}
}
// Cases where at least one of x or y is a type parameter.
switch , := .x.index(), .y.index(); {
case >= 0 && >= 0:
// both x and y are type parameters
if .join(, ) {
return true
}
// both x and y have an inferred type - they must match
return .nifyEq(.x.at(), .y.at(), )
case >= 0:
// x is a type parameter, y is not
if := .x.at(); != nil {
return .nifyEq(, , )
}
// otherwise, infer type from y
.x.set(, )
return true
case >= 0:
// y is a type parameter, x is not
if := .y.at(); != nil {
return .nifyEq(, , )
}
// otherwise, infer type from x
.y.set(, )
return true
}
// If we get here and x or y is a type parameter, they are type parameters
// from outside our declaration list. Try to unify their core types, if any
// (see issue #50755 for a test case).
if enableCoreTypeUnification && !.exact {
if isTypeParam() && !hasName() {
// When considering the type parameter for unification
// we look at the adjusted core term (adjusted core type
// with tilde information).
// If the adjusted core type is a named type N; the
// corresponding core type is under(N). Since !u.exact
// and y doesn't have a name, unification will end up
// comparing under(N) to y, so we can just use the core
// type instead. And we can ignore the tilde because we
// already look at the underlying types on both sides
// and we have known types on both sides.
// Optimization.
if := coreType(); != nil {
if traceInference {
.tracef("core %s ≡ %s", , )
}
return .(, , )
}
} else if isTypeParam() && !hasName() {
// see comment above
if := coreType(); != nil {
if traceInference {
.tracef("%s ≡ core %s", , )
}
return .(, , )
}
}
}
// For type unification, do not shortcut (x == y) for identical
// types. Instead keep comparing them element-wise to unify the
// matching (and equal type parameter types). A simple test case
// where this matters is: func f[P any](a P) { f(a) } .
switch x := .(type) {
case *Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above. See also comment in TypeName.IsAlias.
if , := .(*Basic); {
return .kind == .kind
}
case *Array:
// Two array types are identical if they have identical element types
// and the same array length.
if , := .(*Array); {
// If one or both array lengths are unknown (< 0) due to some error,
// assume they are the same to avoid spurious follow-on errors.
return (.len < 0 || .len < 0 || .len == .len) && .(.elem, .elem, )
}
case *Slice:
// Two slice types are identical if they have identical element types.
if , := .(*Slice); {
return .(.elem, .elem, )
}
case *Struct:
// Two struct types are identical if they have the same sequence of fields,
// and if corresponding fields have the same names, and identical types,
// and identical tags. Two embedded fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if , := .(*Struct); {
if .NumFields() == .NumFields() {
for , := range .fields {
:= .fields[]
if .embedded != .embedded ||
.Tag() != .Tag() ||
!.sameId(.pkg, .name) ||
!.(.typ, .typ, ) {
return false
}
}
return true
}
}
case *Pointer:
// Two pointer types are identical if they have identical base types.
if , := .(*Pointer); {
return .(.base, .base, )
}
case *Tuple:
// Two tuples types are identical if they have the same number of elements
// and corresponding elements have identical types.
if , := .(*Tuple); {
if .Len() == .Len() {
if != nil {
for , := range .vars {
:= .vars[]
if !.(.typ, .typ, ) {
return false
}
}
}
return true
}
}
case *Signature:
// Two function types are identical if they have the same number of parameters
// and result values, corresponding parameter and result types are identical,
// and either both functions are variadic or neither is. Parameter and result
// names are not required to match.
// TODO(gri) handle type parameters or document why we can ignore them.
if , := .(*Signature); {
return .variadic == .variadic &&
.(.params, .params, ) &&
.(.results, .results, )
}
case *Interface:
// Two interface types are identical if they have the same set of methods with
// the same names and identical function types. Lower-case method names from
// different packages are always different. The order of the methods is irrelevant.
if , := .(*Interface); {
:= .typeSet()
:= .typeSet()
if .comparable != .comparable {
return false
}
if !.terms.equal(.terms) {
return false
}
:= .methods
:= .methods
if len() == len() {
// Interface types are the only types where cycles can occur
// that are not "terminated" via named types; and such cycles
// can only be created via method parameter types that are
// anonymous interfaces (directly or indirectly) embedding
// the current interface. Example:
//
// type T interface {
// m() interface{T}
// }
//
// If two such (differently named) interfaces are compared,
// endless recursion occurs if the cycle is not detected.
//
// If x and y were compared before, they must be equal
// (if they were not, the recursion would have stopped);
// search the ifacePair stack for the same pair.
//
// This is a quadratic algorithm, but in practice these stacks
// are extremely short (bounded by the nesting depth of interface
// type declarations that recur via parameter types, an extremely
// rare occurrence). An alternative implementation might use a
// "visited" map, but that is probably less efficient overall.
:= &ifacePair{, , }
for != nil {
if .identical() {
return true // same pair was compared before
}
= .prev
}
if debug {
assertSortedMethods()
assertSortedMethods()
}
for , := range {
:= []
if .Id() != .Id() || !.(.typ, .typ, ) {
return false
}
}
return true
}
}
case *Map:
// Two map types are identical if they have identical key and value types.
if , := .(*Map); {
return .(.key, .key, ) && .(.elem, .elem, )
}
case *Chan:
// Two channel types are identical if they have identical value types.
if , := .(*Chan); {
return (!.exact || .dir == .dir) && .(.elem, .elem, )
}
case *Named:
// TODO(gri) This code differs now from the parallel code in Checker.identical. Investigate.
if , := .(*Named); {
:= .targs.list()
:= .targs.list()
if len() != len() {
return false
}
// TODO(gri) This is not always correct: two types may have the same names
// in the same package if one of them is nested in a function.
// Extremely unlikely but we need an always correct solution.
if .obj.pkg == .obj.pkg && .obj.name == .obj.name {
for , := range {
if !.(, [], ) {
return false
}
}
return true
}
}
case *TypeParam:
// Two type parameters (which are not part of the type parameters of the
// enclosing type as those are handled in the beginning of this function)
// are identical if they originate in the same declaration.
return ==
case nil:
// avoid a crash in case of nil type
default:
panic(sprintf(nil, nil, true, "u.nify(%s, %s), u.x.tparams = %s", , , .x.tparams))
}
return false
}
The pages are generated with Golds v0.4.9. (GOOS=linux GOARCH=amd64)