Source File
mprof.go
Belonging Package
runtime
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Malloc profiling.
// Patterned after tcmalloc's algorithms; shorter code.
package runtime
import (
)
// NOTE(rsc): Everything here could use cas if contention became an issue.
var proflock mutex
// All memory allocations are local and do not escape outside of the profiler.
// The profiler is forbidden from referring to garbage-collected memory.
const (
// profile types
memProfile bucketType = 1 + iota
blockProfile
mutexProfile
// size of bucket hash table
buckHashSize = 179999
// max depth of stack to record in bucket
maxStack = 32
)
type bucketType int
// A bucket holds per-call-stack profiling information.
// The representation is a bit sleazy, inherited from C.
// This struct defines the bucket header. It is followed in
// memory by the stack words and then the actual record
// data, either a memRecord or a blockRecord.
//
// Per-call-stack profiling information.
// Lookup by hashing call stack into a linked-list hash table.
//
// No heap pointers.
//
//go:notinheap
type bucket struct {
next *bucket
allnext *bucket
typ bucketType // memBucket or blockBucket (includes mutexProfile)
hash uintptr
size uintptr
nstk uintptr
}
// A memRecord is the bucket data for a bucket of type memProfile,
// part of the memory profile.
type memRecord struct {
// The following complex 3-stage scheme of stats accumulation
// is required to obtain a consistent picture of mallocs and frees
// for some point in time.
// The problem is that mallocs come in real time, while frees
// come only after a GC during concurrent sweeping. So if we would
// naively count them, we would get a skew toward mallocs.
//
// Hence, we delay information to get consistent snapshots as
// of mark termination. Allocations count toward the next mark
// termination's snapshot, while sweep frees count toward the
// previous mark termination's snapshot:
//
// MT MT MT MT
// .·| .·| .·| .·|
// .·˙ | .·˙ | .·˙ | .·˙ |
// .·˙ | .·˙ | .·˙ | .·˙ |
// .·˙ |.·˙ |.·˙ |.·˙ |
//
// alloc → ▲ ← free
// ┠┅┅┅┅┅┅┅┅┅┅┅P
// C+2 → C+1 → C
//
// alloc → ▲ ← free
// ┠┅┅┅┅┅┅┅┅┅┅┅P
// C+2 → C+1 → C
//
// Since we can't publish a consistent snapshot until all of
// the sweep frees are accounted for, we wait until the next
// mark termination ("MT" above) to publish the previous mark
// termination's snapshot ("P" above). To do this, allocation
// and free events are accounted to *future* heap profile
// cycles ("C+n" above) and we only publish a cycle once all
// of the events from that cycle must be done. Specifically:
//
// Mallocs are accounted to cycle C+2.
// Explicit frees are accounted to cycle C+2.
// GC frees (done during sweeping) are accounted to cycle C+1.
//
// After mark termination, we increment the global heap
// profile cycle counter and accumulate the stats from cycle C
// into the active profile.
// active is the currently published profile. A profiling
// cycle can be accumulated into active once its complete.
active memRecordCycle
// future records the profile events we're counting for cycles
// that have not yet been published. This is ring buffer
// indexed by the global heap profile cycle C and stores
// cycles C, C+1, and C+2. Unlike active, these counts are
// only for a single cycle; they are not cumulative across
// cycles.
//
// We store cycle C here because there's a window between when
// C becomes the active cycle and when we've flushed it to
// active.
future [3]memRecordCycle
}
// memRecordCycle
type memRecordCycle struct {
allocs, frees uintptr
alloc_bytes, free_bytes uintptr
}
// add accumulates b into a. It does not zero b.
func ( *memRecordCycle) ( *memRecordCycle) {
.allocs += .allocs
.frees += .frees
.alloc_bytes += .alloc_bytes
.free_bytes += .free_bytes
}
// A blockRecord is the bucket data for a bucket of type blockProfile,
// which is used in blocking and mutex profiles.
type blockRecord struct {
count float64
cycles int64
}
var (
mbuckets *bucket // memory profile buckets
bbuckets *bucket // blocking profile buckets
xbuckets *bucket // mutex profile buckets
buckhash *[buckHashSize]*bucket
bucketmem uintptr
mProf struct {
// All fields in mProf are protected by proflock.
// cycle is the global heap profile cycle. This wraps
// at mProfCycleWrap.
cycle uint32
// flushed indicates that future[cycle] in all buckets
// has been flushed to the active profile.
flushed bool
}
)
const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24)
// newBucket allocates a bucket with the given type and number of stack entries.
func ( bucketType, int) *bucket {
:= unsafe.Sizeof(bucket{}) + uintptr()*unsafe.Sizeof(uintptr(0))
switch {
default:
throw("invalid profile bucket type")
case memProfile:
+= unsafe.Sizeof(memRecord{})
case blockProfile, mutexProfile:
+= unsafe.Sizeof(blockRecord{})
}
:= (*bucket)(persistentalloc(, 0, &memstats.buckhash_sys))
bucketmem +=
.typ =
.nstk = uintptr()
return
}
// stk returns the slice in b holding the stack.
func ( *bucket) () []uintptr {
:= (*[maxStack]uintptr)(add(unsafe.Pointer(), unsafe.Sizeof(*)))
return [:.nstk:.nstk]
}
// mp returns the memRecord associated with the memProfile bucket b.
func ( *bucket) () *memRecord {
if .typ != memProfile {
throw("bad use of bucket.mp")
}
:= add(unsafe.Pointer(), unsafe.Sizeof(*)+.nstk*unsafe.Sizeof(uintptr(0)))
return (*memRecord)()
}
// bp returns the blockRecord associated with the blockProfile bucket b.
func ( *bucket) () *blockRecord {
if .typ != blockProfile && .typ != mutexProfile {
throw("bad use of bucket.bp")
}
:= add(unsafe.Pointer(), unsafe.Sizeof(*)+.nstk*unsafe.Sizeof(uintptr(0)))
return (*blockRecord)()
}
// Return the bucket for stk[0:nstk], allocating new bucket if needed.
func ( bucketType, uintptr, []uintptr, bool) *bucket {
if buckhash == nil {
buckhash = (*[buckHashSize]*bucket)(sysAlloc(unsafe.Sizeof(*buckhash), &memstats.buckhash_sys))
if buckhash == nil {
throw("runtime: cannot allocate memory")
}
}
// Hash stack.
var uintptr
for , := range {
+=
+= << 10
^= >> 6
}
// hash in size
+=
+= << 10
^= >> 6
// finalize
+= << 3
^= >> 11
:= int( % buckHashSize)
for := buckhash[]; != nil; = .next {
if .typ == && .hash == && .size == && eqslice(.stk(), ) {
return
}
}
if ! {
return nil
}
// Create new bucket.
:= newBucket(, len())
copy(.stk(), )
.hash =
.size =
.next = buckhash[]
buckhash[] =
if == memProfile {
.allnext = mbuckets
mbuckets =
} else if == mutexProfile {
.allnext = xbuckets
xbuckets =
} else {
.allnext = bbuckets
bbuckets =
}
return
}
func (, []uintptr) bool {
if len() != len() {
return false
}
for , := range {
if != [] {
return false
}
}
return true
}
// mProf_NextCycle publishes the next heap profile cycle and creates a
// fresh heap profile cycle. This operation is fast and can be done
// during STW. The caller must call mProf_Flush before calling
// mProf_NextCycle again.
//
// This is called by mark termination during STW so allocations and
// frees after the world is started again count towards a new heap
// profiling cycle.
func () {
lock(&proflock)
// We explicitly wrap mProf.cycle rather than depending on
// uint wraparound because the memRecord.future ring does not
// itself wrap at a power of two.
mProf.cycle = (mProf.cycle + 1) % mProfCycleWrap
mProf.flushed = false
unlock(&proflock)
}
// mProf_Flush flushes the events from the current heap profiling
// cycle into the active profile. After this it is safe to start a new
// heap profiling cycle with mProf_NextCycle.
//
// This is called by GC after mark termination starts the world. In
// contrast with mProf_NextCycle, this is somewhat expensive, but safe
// to do concurrently.
func () {
lock(&proflock)
if !mProf.flushed {
mProf_FlushLocked()
mProf.flushed = true
}
unlock(&proflock)
}
func () {
:= mProf.cycle
for := mbuckets; != nil; = .allnext {
:= .mp()
// Flush cycle C into the published profile and clear
// it for reuse.
:= &.future[%uint32(len(.future))]
.active.add()
* = memRecordCycle{}
}
}
// mProf_PostSweep records that all sweep frees for this GC cycle have
// completed. This has the effect of publishing the heap profile
// snapshot as of the last mark termination without advancing the heap
// profile cycle.
func () {
lock(&proflock)
// Flush cycle C+1 to the active profile so everything as of
// the last mark termination becomes visible. *Don't* advance
// the cycle, since we're still accumulating allocs in cycle
// C+2, which have to become C+1 in the next mark termination
// and so on.
:= mProf.cycle
for := mbuckets; != nil; = .allnext {
:= .mp()
:= &.future[(+1)%uint32(len(.future))]
.active.add()
* = memRecordCycle{}
}
unlock(&proflock)
}
// Called by malloc to record a profiled block.
func ( unsafe.Pointer, uintptr) {
var [maxStack]uintptr
:= callers(4, [:])
lock(&proflock)
:= stkbucket(memProfile, , [:], true)
:= mProf.cycle
:= .mp()
:= &.future[(+2)%uint32(len(.future))]
.allocs++
.alloc_bytes +=
unlock(&proflock)
// Setprofilebucket locks a bunch of other mutexes, so we call it outside of proflock.
// This reduces potential contention and chances of deadlocks.
// Since the object must be alive during call to mProf_Malloc,
// it's fine to do this non-atomically.
systemstack(func() {
setprofilebucket(, )
})
}
// Called when freeing a profiled block.
func ( *bucket, uintptr) {
lock(&proflock)
:= mProf.cycle
:= .mp()
:= &.future[(+1)%uint32(len(.future))]
.frees++
.free_bytes +=
unlock(&proflock)
}
var blockprofilerate uint64 // in CPU ticks
// SetBlockProfileRate controls the fraction of goroutine blocking events
// that are reported in the blocking profile. The profiler aims to sample
// an average of one blocking event per rate nanoseconds spent blocked.
//
// To include every blocking event in the profile, pass rate = 1.
// To turn off profiling entirely, pass rate <= 0.
func ( int) {
var int64
if <= 0 {
= 0 // disable profiling
} else if == 1 {
= 1 // profile everything
} else {
// convert ns to cycles, use float64 to prevent overflow during multiplication
= int64(float64() * float64(tickspersecond()) / (1000 * 1000 * 1000))
if == 0 {
= 1
}
}
atomic.Store64(&blockprofilerate, uint64())
}
func ( int64, int) {
if <= 0 {
= 1
}
:= int64(atomic.Load64(&blockprofilerate))
if blocksampled(, ) {
saveblockevent(, , +1, blockProfile)
}
}
// blocksampled returns true for all events where cycles >= rate. Shorter
// events have a cycles/rate random chance of returning true.
func (, int64) bool {
if <= 0 || ( > && int64(fastrand())% > ) {
return false
}
return true
}
func (, int64, int, bucketType) {
:= getg()
var int
var [maxStack]uintptr
if .m.curg == nil || .m.curg == {
= callers(, [:])
} else {
= gcallers(.m.curg, , [:])
}
lock(&proflock)
:= stkbucket(, 0, [:], true)
if == blockProfile && < {
// Remove sampling bias, see discussion on http://golang.org/cl/299991.
.bp().count += float64() / float64()
.bp().cycles +=
} else {
.bp().count++
.bp().cycles +=
}
unlock(&proflock)
}
var mutexprofilerate uint64 // fraction sampled
// SetMutexProfileFraction controls the fraction of mutex contention events
// that are reported in the mutex profile. On average 1/rate events are
// reported. The previous rate is returned.
//
// To turn off profiling entirely, pass rate 0.
// To just read the current rate, pass rate < 0.
// (For n>1 the details of sampling may change.)
func ( int) int {
if < 0 {
return int(mutexprofilerate)
}
:= mutexprofilerate
atomic.Store64(&mutexprofilerate, uint64())
return int()
}
//go:linkname mutexevent sync.event
func ( int64, int) {
if < 0 {
= 0
}
:= int64(atomic.Load64(&mutexprofilerate))
// TODO(pjw): measure impact of always calling fastrand vs using something
// like malloc.go:nextSample()
if > 0 && int64(fastrand())% == 0 {
saveblockevent(, , +1, mutexProfile)
}
}
// Go interface to profile data.
// A StackRecord describes a single execution stack.
type StackRecord struct {
Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
}
// Stack returns the stack trace associated with the record,
// a prefix of r.Stack0.
func ( *StackRecord) () []uintptr {
for , := range .Stack0 {
if == 0 {
return .Stack0[0:]
}
}
return .Stack0[0:]
}
// MemProfileRate controls the fraction of memory allocations
// that are recorded and reported in the memory profile.
// The profiler aims to sample an average of
// one allocation per MemProfileRate bytes allocated.
//
// To include every allocated block in the profile, set MemProfileRate to 1.
// To turn off profiling entirely, set MemProfileRate to 0.
//
// The tools that process the memory profiles assume that the
// profile rate is constant across the lifetime of the program
// and equal to the current value. Programs that change the
// memory profiling rate should do so just once, as early as
// possible in the execution of the program (for example,
// at the beginning of main).
var MemProfileRate int = defaultMemProfileRate(512 * 1024)
// defaultMemProfileRate returns 0 if disableMemoryProfiling is set.
// It exists primarily for the godoc rendering of MemProfileRate
// above.
func ( int) int {
if disableMemoryProfiling {
return 0
}
return
}
// disableMemoryProfiling is set by the linker if runtime.MemProfile
// is not used and the link type guarantees nobody else could use it
// elsewhere.
var disableMemoryProfiling bool
// A MemProfileRecord describes the live objects allocated
// by a particular call sequence (stack trace).
type MemProfileRecord struct {
AllocBytes, FreeBytes int64 // number of bytes allocated, freed
AllocObjects, FreeObjects int64 // number of objects allocated, freed
Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
}
// InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes).
func ( *MemProfileRecord) () int64 { return .AllocBytes - .FreeBytes }
// InUseObjects returns the number of objects in use (AllocObjects - FreeObjects).
func ( *MemProfileRecord) () int64 {
return .AllocObjects - .FreeObjects
}
// Stack returns the stack trace associated with the record,
// a prefix of r.Stack0.
func ( *MemProfileRecord) () []uintptr {
for , := range .Stack0 {
if == 0 {
return .Stack0[0:]
}
}
return .Stack0[0:]
}
// MemProfile returns a profile of memory allocated and freed per allocation
// site.
//
// MemProfile returns n, the number of records in the current memory profile.
// If len(p) >= n, MemProfile copies the profile into p and returns n, true.
// If len(p) < n, MemProfile does not change p and returns n, false.
//
// If inuseZero is true, the profile includes allocation records
// where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes.
// These are sites where memory was allocated, but it has all
// been released back to the runtime.
//
// The returned profile may be up to two garbage collection cycles old.
// This is to avoid skewing the profile toward allocations; because
// allocations happen in real time but frees are delayed until the garbage
// collector performs sweeping, the profile only accounts for allocations
// that have had a chance to be freed by the garbage collector.
//
// Most clients should use the runtime/pprof package or
// the testing package's -test.memprofile flag instead
// of calling MemProfile directly.
func ( []MemProfileRecord, bool) ( int, bool) {
lock(&proflock)
// If we're between mProf_NextCycle and mProf_Flush, take care
// of flushing to the active profile so we only have to look
// at the active profile below.
mProf_FlushLocked()
:= true
for := mbuckets; != nil; = .allnext {
:= .mp()
if || .active.alloc_bytes != .active.free_bytes {
++
}
if .active.allocs != 0 || .active.frees != 0 {
= false
}
}
if {
// Absolutely no data, suggesting that a garbage collection
// has not yet happened. In order to allow profiling when
// garbage collection is disabled from the beginning of execution,
// accumulate all of the cycles, and recount buckets.
= 0
for := mbuckets; != nil; = .allnext {
:= .mp()
for := range .future {
.active.add(&.future[])
.future[] = memRecordCycle{}
}
if || .active.alloc_bytes != .active.free_bytes {
++
}
}
}
if <= len() {
= true
:= 0
for := mbuckets; != nil; = .allnext {
:= .mp()
if || .active.alloc_bytes != .active.free_bytes {
record(&[], )
++
}
}
}
unlock(&proflock)
return
}
// Write b's data to r.
func ( *MemProfileRecord, *bucket) {
:= .mp()
.AllocBytes = int64(.active.alloc_bytes)
.FreeBytes = int64(.active.free_bytes)
.AllocObjects = int64(.active.allocs)
.FreeObjects = int64(.active.frees)
if raceenabled {
racewriterangepc(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0), getcallerpc(), abi.FuncPCABIInternal(MemProfile))
}
if msanenabled {
msanwrite(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0))
}
if asanenabled {
asanwrite(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0))
}
copy(.Stack0[:], .stk())
for := int(.nstk); < len(.Stack0); ++ {
.Stack0[] = 0
}
}
func ( func(*bucket, uintptr, *uintptr, uintptr, uintptr, uintptr)) {
lock(&proflock)
for := mbuckets; != nil; = .allnext {
:= .mp()
(, .nstk, &.stk()[0], .size, .active.allocs, .active.frees)
}
unlock(&proflock)
}
// BlockProfileRecord describes blocking events originated
// at a particular call sequence (stack trace).
type BlockProfileRecord struct {
Count int64
Cycles int64
StackRecord
}
// BlockProfile returns n, the number of records in the current blocking profile.
// If len(p) >= n, BlockProfile copies the profile into p and returns n, true.
// If len(p) < n, BlockProfile does not change p and returns n, false.
//
// Most clients should use the runtime/pprof package or
// the testing package's -test.blockprofile flag instead
// of calling BlockProfile directly.
func ( []BlockProfileRecord) ( int, bool) {
lock(&proflock)
for := bbuckets; != nil; = .allnext {
++
}
if <= len() {
= true
for := bbuckets; != nil; = .allnext {
:= .bp()
:= &[0]
.Count = int64(.count)
// Prevent callers from having to worry about division by zero errors.
// See discussion on http://golang.org/cl/299991.
if .Count == 0 {
.Count = 1
}
.Cycles = .cycles
if raceenabled {
racewriterangepc(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0), getcallerpc(), abi.FuncPCABIInternal())
}
if msanenabled {
msanwrite(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0))
}
if asanenabled {
asanwrite(unsafe.Pointer(&.Stack0[0]), unsafe.Sizeof(.Stack0))
}
:= copy(.Stack0[:], .stk())
for ; < len(.Stack0); ++ {
.Stack0[] = 0
}
= [1:]
}
}
unlock(&proflock)
return
}
// MutexProfile returns n, the number of records in the current mutex profile.
// If len(p) >= n, MutexProfile copies the profile into p and returns n, true.
// Otherwise, MutexProfile does not change p, and returns n, false.
//
// Most clients should use the runtime/pprof package
// instead of calling MutexProfile directly.
func ( []BlockProfileRecord) ( int, bool) {
lock(&proflock)
for := xbuckets; != nil; = .allnext {
++
}
if <= len() {
= true
for := xbuckets; != nil; = .allnext {
:= .bp()
:= &[0]
.Count = int64(.count)
.Cycles = .cycles
:= copy(.Stack0[:], .stk())
for ; < len(.Stack0); ++ {
.Stack0[] = 0
}
= [1:]
}
}
unlock(&proflock)
return
}
// ThreadCreateProfile returns n, the number of records in the thread creation profile.
// If len(p) >= n, ThreadCreateProfile copies the profile into p and returns n, true.
// If len(p) < n, ThreadCreateProfile does not change p and returns n, false.
//
// Most clients should use the runtime/pprof package instead
// of calling ThreadCreateProfile directly.
func ( []StackRecord) ( int, bool) {
:= (*m)(atomic.Loadp(unsafe.Pointer(&allm)))
for := ; != nil; = .alllink {
++
}
if <= len() {
= true
:= 0
for := ; != nil; = .alllink {
[].Stack0 = .createstack
++
}
}
return
}
//go:linkname runtime_goroutineProfileWithLabels runtime/pprof.runtime_goroutineProfileWithLabels
func ( []StackRecord, []unsafe.Pointer) ( int, bool) {
return goroutineProfileWithLabels(, )
}
// labels may be nil. If labels is non-nil, it must have the same length as p.
func ( []StackRecord, []unsafe.Pointer) ( int, bool) {
if != nil && len() != len() {
= nil
}
:= getg()
:= func( *g) bool {
// Checking isSystemGoroutine here makes GoroutineProfile
// consistent with both NumGoroutine and Stack.
return != && readgstatus() != _Gdead && !isSystemGoroutine(, false)
}
stopTheWorld("profile")
// World is stopped, no locking required.
= 1
forEachGRace(func( *g) {
if () {
++
}
})
if <= len() {
= true
, := ,
// Save current goroutine.
:= getcallersp()
:= getcallerpc()
systemstack(func() {
saveg(, , , &[0])
})
= [1:]
// If we have a place to put our goroutine labelmap, insert it there.
if != nil {
[0] = .labels
= [1:]
}
// Save other goroutines.
forEachGRace(func( *g) {
if !() {
return
}
if len() == 0 {
// Should be impossible, but better to return a
// truncated profile than to crash the entire process.
return
}
// saveg calls gentraceback, which may call cgo traceback functions.
// The world is stopped, so it cannot use cgocall (which will be
// blocked at exitsyscall). Do it on the system stack so it won't
// call into the schedular (see traceback.go:cgoContextPCs).
systemstack(func() { saveg(^uintptr(0), ^uintptr(0), , &[0]) })
if != nil {
[0] = .labels
= [1:]
}
= [1:]
})
}
startTheWorld()
return ,
}
// GoroutineProfile returns n, the number of records in the active goroutine stack profile.
// If len(p) >= n, GoroutineProfile copies the profile into p and returns n, true.
// If len(p) < n, GoroutineProfile does not change p and returns n, false.
//
// Most clients should use the runtime/pprof package instead
// of calling GoroutineProfile directly.
func ( []StackRecord) ( int, bool) {
return goroutineProfileWithLabels(, nil)
}
func (, uintptr, *g, *StackRecord) {
:= gentraceback(, , 0, , 0, &.Stack0[0], len(.Stack0), nil, nil, 0)
if < len(.Stack0) {
.Stack0[] = 0
}
}
// Stack formats a stack trace of the calling goroutine into buf
// and returns the number of bytes written to buf.
// If all is true, Stack formats stack traces of all other goroutines
// into buf after the trace for the current goroutine.
func ( []byte, bool) int {
if {
stopTheWorld("stack trace")
}
:= 0
if len() > 0 {
:= getg()
:= getcallersp()
:= getcallerpc()
systemstack(func() {
:= getg()
// Force traceback=1 to override GOTRACEBACK setting,
// so that Stack's results are consistent.
// GOTRACEBACK is only about crash dumps.
.m.traceback = 1
.writebuf = [0:0:len()]
goroutineheader()
traceback(, , 0, )
if {
tracebackothers()
}
.m.traceback = 0
= len(.writebuf)
.writebuf = nil
})
}
if {
startTheWorld()
}
return
}
// Tracing of alloc/free/gc.
var tracelock mutex
func ( unsafe.Pointer, uintptr, *_type) {
lock(&tracelock)
:= getg()
.m.traceback = 2
if == nil {
print("tracealloc(", , ", ", hex(), ")\n")
} else {
print("tracealloc(", , ", ", hex(), ", ", .string(), ")\n")
}
if .m.curg == nil || == .m.curg {
goroutineheader()
:= getcallerpc()
:= getcallersp()
systemstack(func() {
traceback(, , 0, )
})
} else {
goroutineheader(.m.curg)
traceback(^uintptr(0), ^uintptr(0), 0, .m.curg)
}
print("\n")
.m.traceback = 0
unlock(&tracelock)
}
func ( unsafe.Pointer, uintptr) {
lock(&tracelock)
:= getg()
.m.traceback = 2
print("tracefree(", , ", ", hex(), ")\n")
goroutineheader()
:= getcallerpc()
:= getcallersp()
systemstack(func() {
traceback(, , 0, )
})
print("\n")
.m.traceback = 0
unlock(&tracelock)
}
func () {
lock(&tracelock)
:= getg()
.m.traceback = 2
print("tracegc()\n")
// running on m->g0 stack; show all non-g0 goroutines
tracebackothers()
print("end tracegc\n")
print("\n")
.m.traceback = 0
unlock(&tracelock)
}
The pages are generated with Golds v0.4.9. (GOOS=linux GOARCH=amd64)