crypto/rsa.PrivateKey.Primes (field)

32 uses

	crypto/rsa (current package)
		rsa.go#L103: 	Primes    []*big.Int // prime factors of N, has >= 2 elements.
		rsa.go#L125: 	if len(priv.Primes) != len(xx.Primes) {
		rsa.go#L128: 	for i := range priv.Primes {
		rsa.go#L129: 		if priv.Primes[i].Cmp(xx.Primes[i]) != 0 {
		rsa.go#L210: 	for _, prime := range priv.Primes {
		rsa.go#L229: 	for _, prime := range priv.Primes {
		rsa.go#L338: 			priv.Primes = primes
		rsa.go#L463: 	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
		rsa.go#L466: 	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
		rsa.go#L469: 	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
		rsa.go#L471: 	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
		rsa.go#L472: 	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
		rsa.go#L473: 	for i := 2; i < len(priv.Primes); i++ {
		rsa.go#L474: 		prime := priv.Primes[i]
		rsa.go#L535: 		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
		rsa.go#L536: 		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
		rsa.go#L539: 			m.Add(m, priv.Primes[0])
		rsa.go#L542: 		m.Mod(m, priv.Primes[0])
		rsa.go#L543: 		m.Mul(m, priv.Primes[1])
		rsa.go#L547: 			prime := priv.Primes[2+i]

	crypto/x509
		pkcs1.go#L78: 	key.Primes = make([]*big.Int, 2+len(priv.AdditionalPrimes))
		pkcs1.go#L79: 	key.Primes[0] = priv.P
		pkcs1.go#L80: 	key.Primes[1] = priv.Q
		pkcs1.go#L85: 		key.Primes[i+2] = a.Prime
		pkcs1.go#L108: 	if len(key.Primes) > 2 {
		pkcs1.go#L117: 		P:       key.Primes[0],
		pkcs1.go#L118: 		Q:       key.Primes[1],
		pkcs1.go#L126: 		priv.AdditionalPrimes[i].Prime = key.Primes[2+i]