crypto/rsa.PrivateKey.Primes (field)
32 uses
crypto/rsa (current package)
rsa.go#L103: Primes []*big.Int // prime factors of N, has >= 2 elements.
rsa.go#L125: if len(priv.Primes) != len(xx.Primes) {
rsa.go#L128: for i := range priv.Primes {
rsa.go#L129: if priv.Primes[i].Cmp(xx.Primes[i]) != 0 {
rsa.go#L210: for _, prime := range priv.Primes {
rsa.go#L229: for _, prime := range priv.Primes {
rsa.go#L338: priv.Primes = primes
rsa.go#L463: priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
rsa.go#L466: priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
rsa.go#L469: priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
rsa.go#L471: r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
rsa.go#L472: priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
rsa.go#L473: for i := 2; i < len(priv.Primes); i++ {
rsa.go#L474: prime := priv.Primes[i]
rsa.go#L535: m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
rsa.go#L536: m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
rsa.go#L539: m.Add(m, priv.Primes[0])
rsa.go#L542: m.Mod(m, priv.Primes[0])
rsa.go#L543: m.Mul(m, priv.Primes[1])
rsa.go#L547: prime := priv.Primes[2+i]
crypto/x509
pkcs1.go#L78: key.Primes = make([]*big.Int, 2+len(priv.AdditionalPrimes))
pkcs1.go#L79: key.Primes[0] = priv.P
pkcs1.go#L80: key.Primes[1] = priv.Q
pkcs1.go#L85: key.Primes[i+2] = a.Prime
pkcs1.go#L108: if len(key.Primes) > 2 {
pkcs1.go#L117: P: key.Primes[0],
pkcs1.go#L118: Q: key.Primes[1],
pkcs1.go#L126: priv.AdditionalPrimes[i].Prime = key.Primes[2+i]