math/big.Int.Cmp (method)

39 uses

	math/big (current package)
		int.go#L255: 	for i.Cmp(&K) < 0 {
		int.go#L371: func (x *Int) Cmp(y *Int) (r int) {
		int.go#L911: 	if d.Cmp(intOne) != 0 {
		int.go#L954: 		if b.Cmp(intOne) == 0 {
		int.go#L1057: 		for t.Cmp(intOne) != 0 {
		int.go#L1088: 	if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
		rat.go#L443: 		if f := NewInt(0).lehmerGCD(nil, nil, &z.a, &z.b); f.Cmp(intOne) != 0 {
		rat.go#L486: 	return a.Cmp(&b)

	crypto/dsa
		dsa.go#L152: 		if g.Cmp(one) == 0 {
		dsa.go#L182: 		if x.Sign() != 0 && x.Cmp(priv.Q) < 0 {
		dsa.go#L244: 			if k.Sign() > 0 && k.Cmp(priv.Q) < 0 {
		dsa.go#L297: 	if r.Sign() < 1 || r.Cmp(pub.Q) >= 0 {
		dsa.go#L300: 	if s.Sign() < 1 || s.Cmp(pub.Q) >= 0 {
		dsa.go#L325: 	return v.Cmp(r) == 0

	crypto/ecdsa
		ecdsa_legacy.go#L172: 	if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
		ecdsa_legacy.go#L193: 	return x.Cmp(r) == 0
		ecdsa_legacy.go#L211: 		if k.Sign() != 0 && k.Cmp(N) < 0 {

	crypto/elliptic
		elliptic.go#L94: 		if new(big.Int).SetBytes(priv).Cmp(N) >= 0 {
		elliptic.go#L168: 	if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 {
		elliptic.go#L194: 	if x.Cmp(p) >= 0 {
		nistec_p256.go#L19: 	if k.Cmp(c.params.N) >= 0 {
		params.go#L63: 	if x.Sign() < 0 || x.Cmp(curve.P) >= 0 ||
		params.go#L64: 		y.Sign() < 0 || y.Cmp(curve.P) >= 0 {
		params.go#L72: 	return curve.polynomial(x).Cmp(y2) == 0

	crypto/rand
		util.go#L100: 		if n.Cmp(max) < 0 {

	crypto/rsa
		rsa.go#L452: 				if prime.Cmp(primes[j]) == 0 {
		rsa.go#L587: 		if prime.Cmp(bigOne) <= 0 {

	crypto/tls
		tls.go#L326: 		if pub.N.Cmp(priv.N) != 0 {
		tls.go#L334: 		if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 {

	crypto/x509
		oid.go#L93: 	if n.Cmp(big.NewInt(0)) == 0 {
		oid.go#L100: 	if n.Cmp(big.NewInt(0)) == 0 {
		oid.go#L165: 	if first.Cmp(big.NewInt(2)) > 0 || (first.Cmp(big.NewInt(2)) < 0 && second.Cmp(big.NewInt(40)) >= 0) {
		sec1.go#L111: 	if k.Cmp(curveOrder) >= 0 {

	go/constant
		value.go#L1371: 		return cmpZero(x.val.Cmp(y.(intVal).val), op)