math/big.Int.Exp (method)
20 uses
math/big (current package)
int.go#L488: func (z *Int) Exp(x, y, m *Int) *Int {
int.go#L900: z.Exp(x, e, p) // z = x^e mod p
int.go#L915: alpha := new(Int).Exp(tx, e, p)
int.go#L951: y.Exp(x, &y, p) // y = x^((s+1)/2)
int.go#L952: b.Exp(x, &s, p) // b = x^s
int.go#L953: g.Exp(&n, &s, p) // g = n^s
int.go#L968: t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
crypto/dsa
dsa.go#L146: g.Exp(h, e, p)
dsa.go#L180: priv.Y.Exp(priv.G, x, priv.P)
dsa.go#L191: return new(big.Int).Exp(k, pMinus2, P)
dsa.go#L238: r = new(big.Int).Exp(priv.G, k, priv.P)
dsa.go#L302: v := u1.Exp(pub.G, u1, pub.P)
dsa.go#L303: u2.Exp(pub.Y, u2, pub.P)
crypto/ecdsa
ecdsa.go#L184: return new(big.Int).Exp(k, nMinus2, N)
crypto/rsa
rsa.go#L389: c.Exp(m, e, pub.N)
rsa.go#L524: rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0
rsa.go#L532: m = new(big.Int).Exp(c, priv.D, priv.N)
rsa.go#L535: m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
rsa.go#L536: m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
rsa.go#L548: m2.Exp(c, values.Exp, prime)