math/big.Int.Exp (method)

20 uses

	math/big (current package)
		int.go#L488: func (z *Int) Exp(x, y, m *Int) *Int {
		int.go#L900: 	z.Exp(x, e, p)               // z = x^e mod p
		int.go#L915: 	alpha := new(Int).Exp(tx, e, p)
		int.go#L951: 	y.Exp(x, &y, p)  // y = x^((s+1)/2)
		int.go#L952: 	b.Exp(x, &s, p)  // b = x^s
		int.go#L953: 	g.Exp(&n, &s, p) // g = n^s
		int.go#L968: 		t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)

	crypto/dsa
		dsa.go#L146: 		g.Exp(h, e, p)
		dsa.go#L180: 	priv.Y.Exp(priv.G, x, priv.P)
		dsa.go#L191: 	return new(big.Int).Exp(k, pMinus2, P)
		dsa.go#L238: 		r = new(big.Int).Exp(priv.G, k, priv.P)
		dsa.go#L302: 	v := u1.Exp(pub.G, u1, pub.P)
		dsa.go#L303: 	u2.Exp(pub.Y, u2, pub.P)

	crypto/ecdsa
		ecdsa.go#L184: 	return new(big.Int).Exp(k, nMinus2, N)

	crypto/rsa
		rsa.go#L389: 	c.Exp(m, e, pub.N)
		rsa.go#L524: 		rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0
		rsa.go#L532: 		m = new(big.Int).Exp(c, priv.D, priv.N)
		rsa.go#L535: 		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
		rsa.go#L536: 		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
		rsa.go#L548: 			m2.Exp(c, values.Exp, prime)