math/big.Int.Mod (method)
59 uses
math/big (current package)
int.go#L264: func (z *Int) Mod(x, y *Int) *Int {
int.go#L816: g = g2.Mod(g, n)
int.go#L866: a.Mod(&a, &b)
int.go#L917: beta.Mod(beta, p)
int.go#L919: beta.Mod(beta, p)
int.go#L922: beta.Mod(beta, p)
int.go#L924: z.Mod(beta, p)
int.go#L960: t.Mul(&t, &t).Mod(&t, p)
int.go#L970: g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
int.go#L971: y.Mul(&y, &t).Mod(&y, p)
int.go#L972: b.Mul(&b, &g).Mod(&b, p)
int.go#L991: x = new(Int).Mod(x, p)
crypto/dsa
dsa.go#L121: rem.Mod(p, q)
dsa.go#L239: r.Mod(r, priv.Q)
dsa.go#L249: s.Mod(s, priv.Q)
dsa.go#L251: s.Mod(s, priv.Q)
dsa.go#L299: u1.Mod(u1, pub.Q)
dsa.go#L301: u2.Mod(u2, pub.Q)
dsa.go#L305: v.Mod(v, pub.P)
dsa.go#L306: v.Mod(v, pub.Q)
crypto/ecdsa
ecdsa.go#L139: k.Mod(k, n)
ecdsa.go#L262: r.Mod(r, N)
ecdsa.go#L272: s.Mod(s, N) // N != 0
ecdsa.go#L317: u1.Mod(u1, N)
ecdsa.go#L319: u2.Mod(u2, N)
ecdsa.go#L334: x.Mod(x, N)
crypto/elliptic
elliptic.go#L80: x3.Mod(x3, curve.P)
elliptic.go#L99: y2.Mod(y2, curve.P)
elliptic.go#L126: xOut.Mod(xOut, curve.P)
elliptic.go#L129: yOut.Mod(yOut, curve.P)
elliptic.go#L164: z1z1.Mod(z1z1, curve.P)
elliptic.go#L166: z2z2.Mod(z2z2, curve.P)
elliptic.go#L169: u1.Mod(u1, curve.P)
elliptic.go#L171: u2.Mod(u2, curve.P)
elliptic.go#L183: s1.Mod(s1, curve.P)
elliptic.go#L186: s2.Mod(s2, curve.P)
elliptic.go#L203: x3.Mod(x3, curve.P)
elliptic.go#L211: y3.Mod(y3, curve.P)
elliptic.go#L218: z3.Mod(z3, curve.P)
elliptic.go#L239: delta.Mod(delta, curve.P)
elliptic.go#L241: gamma.Mod(gamma, curve.P)
elliptic.go#L256: beta8.Mod(beta8, curve.P)
elliptic.go#L261: x3.Mod(x3, curve.P)
elliptic.go#L273: z3.Mod(z3, curve.P)
elliptic.go#L284: gamma.Mod(gamma, curve.P)
elliptic.go#L290: y3.Mod(y3, curve.P)
elliptic.go#L432: y.Neg(y).Mod(y, p)
p256_asm.go#L122: k = new(big.Int).Mod(k, p256.N)
p256_asm.go#L219: n.Mod(n, p256.N)
p256_asm.go#L233: return new(big.Int).Mod(in, p256.P)
crypto/rand
util.go#L77: bigMod.Mod(p, smallPrimesProduct)
crypto/rsa
rsa.go#L231: congruence.Mod(de, pminus1)
rsa.go#L464: priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
rsa.go#L467: priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
rsa.go#L478: values.Exp.Mod(priv.D, values.Exp)
rsa.go#L527: cCopy.Mod(cCopy, priv.N)
rsa.go#L542: m.Mod(m, priv.Primes[0])
rsa.go#L551: m2.Mod(m2, prime)
rsa.go#L563: m.Mod(m, priv.N)