math/big.Int.Mod (method)

59 uses

	math/big (current package)
		int.go#L264: func (z *Int) Mod(x, y *Int) *Int {
		int.go#L816: 		g = g2.Mod(g, n)
		int.go#L866: 		a.Mod(&a, &b)
		int.go#L917: 	beta.Mod(beta, p)
		int.go#L919: 	beta.Mod(beta, p)
		int.go#L922: 	beta.Mod(beta, p)
		int.go#L924: 	z.Mod(beta, p)
		int.go#L960: 			t.Mul(&t, &t).Mod(&t, p)
		int.go#L970: 		g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
		int.go#L971: 		y.Mul(&y, &t).Mod(&y, p)
		int.go#L972: 		b.Mul(&b, &g).Mod(&b, p)
		int.go#L991: 		x = new(Int).Mod(x, p)

	crypto/dsa
		dsa.go#L121: 			rem.Mod(p, q)
		dsa.go#L239: 		r.Mod(r, priv.Q)
		dsa.go#L249: 		s.Mod(s, priv.Q)
		dsa.go#L251: 		s.Mod(s, priv.Q)
		dsa.go#L299: 	u1.Mod(u1, pub.Q)
		dsa.go#L301: 	u2.Mod(u2, pub.Q)
		dsa.go#L305: 	v.Mod(v, pub.P)
		dsa.go#L306: 	v.Mod(v, pub.Q)

	crypto/ecdsa
		ecdsa.go#L139: 	k.Mod(k, n)
		ecdsa.go#L262: 			r.Mod(r, N)
		ecdsa.go#L272: 		s.Mod(s, N) // N != 0
		ecdsa.go#L317: 	u1.Mod(u1, N)
		ecdsa.go#L319: 	u2.Mod(u2, N)
		ecdsa.go#L334: 	x.Mod(x, N)

	crypto/elliptic
		elliptic.go#L80: 	x3.Mod(x3, curve.P)
		elliptic.go#L99: 	y2.Mod(y2, curve.P)
		elliptic.go#L126: 	xOut.Mod(xOut, curve.P)
		elliptic.go#L129: 	yOut.Mod(yOut, curve.P)
		elliptic.go#L164: 	z1z1.Mod(z1z1, curve.P)
		elliptic.go#L166: 	z2z2.Mod(z2z2, curve.P)
		elliptic.go#L169: 	u1.Mod(u1, curve.P)
		elliptic.go#L171: 	u2.Mod(u2, curve.P)
		elliptic.go#L183: 	s1.Mod(s1, curve.P)
		elliptic.go#L186: 	s2.Mod(s2, curve.P)
		elliptic.go#L203: 	x3.Mod(x3, curve.P)
		elliptic.go#L211: 	y3.Mod(y3, curve.P)
		elliptic.go#L218: 	z3.Mod(z3, curve.P)
		elliptic.go#L239: 	delta.Mod(delta, curve.P)
		elliptic.go#L241: 	gamma.Mod(gamma, curve.P)
		elliptic.go#L256: 	beta8.Mod(beta8, curve.P)
		elliptic.go#L261: 	x3.Mod(x3, curve.P)
		elliptic.go#L273: 	z3.Mod(z3, curve.P)
		elliptic.go#L284: 	gamma.Mod(gamma, curve.P)
		elliptic.go#L290: 	y3.Mod(y3, curve.P)
		elliptic.go#L432: 		y.Neg(y).Mod(y, p)
		p256_asm.go#L122: 		k = new(big.Int).Mod(k, p256.N)
		p256_asm.go#L219: 		n.Mod(n, p256.N)
		p256_asm.go#L233: 	return new(big.Int).Mod(in, p256.P)

	crypto/rand
		util.go#L77: 		bigMod.Mod(p, smallPrimesProduct)

	crypto/rsa
		rsa.go#L231: 		congruence.Mod(de, pminus1)
		rsa.go#L464: 	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
		rsa.go#L467: 	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
		rsa.go#L478: 		values.Exp.Mod(priv.D, values.Exp)
		rsa.go#L527: 		cCopy.Mod(cCopy, priv.N)
		rsa.go#L542: 		m.Mod(m, priv.Primes[0])
		rsa.go#L551: 			m2.Mod(m2, prime)
		rsa.go#L563: 		m.Mod(m, priv.N)