type math/big.Int
537 uses
math/big (current package)
float.go#L594: func (z *Float) SetInt(x *Int) *Float {
float.go#L1076: func (x *Float) Int(z *Int) (*Int, Accuracy) {
float.go#L1082: z = new(Int)
float.go#L1104: z = new(Int)
int.go#L25: type Int struct {
int.go#L30: var intOne = &Int{false, natOne}
int.go#L38: func (x *Int) Sign() int {
int.go#L49: func (z *Int) SetInt64(x int64) *Int {
int.go#L61: func (z *Int) SetUint64(x uint64) *Int {
int.go#L68: func NewInt(x int64) *Int {
int.go#L69: return new(Int).SetInt64(x)
int.go#L73: func (z *Int) Set(x *Int) *Int {
int.go#L86: func (x *Int) Bits() []Word {
int.go#L95: func (z *Int) SetBits(abs []Word) *Int {
int.go#L102: func (z *Int) Abs(x *Int) *Int {
int.go#L109: func (z *Int) Neg(x *Int) *Int {
int.go#L116: func (z *Int) Add(x, y *Int) *Int {
int.go#L137: func (z *Int) Sub(x, y *Int) *Int {
int.go#L158: func (z *Int) Mul(x, y *Int) *Int {
int.go#L176: func (z *Int) MulRange(a, b int64) *Int {
int.go#L197: func (z *Int) Binomial(n, k int64) *Int {
int.go#L202: var a, b Int
int.go#L211: func (z *Int) Quo(x, y *Int) *Int {
int.go#L220: func (z *Int) Rem(x, y *Int) *Int {
int.go#L238: func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
int.go#L247: func (z *Int) Div(x, y *Int) *Int {
int.go#L249: var r Int
int.go#L264: func (z *Int) Mod(x, y *Int) *Int {
int.go#L267: y0 = new(Int).Set(y)
int.go#L269: var q Int
int.go#L296: func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
int.go#L299: y0 = new(Int).Set(y)
int.go#L320: func (x *Int) Cmp(y *Int) (r int) {
int.go#L347: func (x *Int) CmpAbs(y *Int) int {
int.go#L373: func (x *Int) Int64() int64 {
int.go#L383: func (x *Int) Uint64() uint64 {
int.go#L388: func (x *Int) IsInt64() bool {
int.go#L397: func (x *Int) IsUint64() bool {
int.go#L424: func (z *Int) SetString(s string, base int) (*Int, bool) {
int.go#L430: func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {
int.go#L443: func (z *Int) SetBytes(buf []byte) *Int {
int.go#L452: func (x *Int) Bytes() []byte {
int.go#L461: func (x *Int) FillBytes(buf []byte) []byte {
int.go#L472: func (x *Int) BitLen() int {
int.go#L478: func (x *Int) TrailingZeroBits() uint {
int.go#L488: func (z *Int) Exp(x, y, m *Int) *Int {
int.go#L496: inverse := new(Int).ModInverse(x, m)
int.go#L531: func (z *Int) GCD(x, y, a, b *Int) *Int {
int.go#L572: func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {
int.go#L623: func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) {
int.go#L647: func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) {
int.go#L671: func (z *Int) lehmerGCD(x, y, a, b *Int) *Int {
int.go#L672: var A, B, Ua, Ub *Int
int.go#L674: A = new(Int).Abs(a)
int.go#L675: B = new(Int).Abs(b)
int.go#L681: Ua = new(Int).SetInt64(1)
int.go#L682: Ub = new(Int)
int.go#L686: q := new(Int)
int.go#L687: r := new(Int)
int.go#L688: s := new(Int)
int.go#L689: t := new(Int)
int.go#L794: func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
int.go#L808: func (z *Int) ModInverse(g, n *Int) *Int {
int.go#L811: var n2 Int
int.go#L815: var g2 Int
int.go#L818: var d, x Int
int.go#L838: func Jacobi(x, y *Int) int {
int.go#L847: var a, b, c Int
int.go#L897: func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
int.go#L898: e := new(Int).Add(p, intOne) // e = p + 1
int.go#L910: func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int {
int.go#L913: e := new(Int).Rsh(p, 3) // e = (p - 5) / 8
int.go#L914: tx := new(Int).Lsh(x, 1) // tx = 2*x
int.go#L915: alpha := new(Int).Exp(tx, e, p)
int.go#L916: beta := new(Int).Mul(alpha, alpha)
int.go#L930: func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
int.go#L932: var s Int
int.go#L938: var n Int
int.go#L948: var y, b, g, t Int
int.go#L981: func (z *Int) ModSqrt(x, p *Int) *Int {
int.go#L991: x = new(Int).Mod(x, p)
int.go#L1008: func (z *Int) Lsh(x *Int, n uint) *Int {
int.go#L1015: func (z *Int) Rsh(x *Int, n uint) *Int {
int.go#L1032: func (x *Int) Bit(i int) uint {
int.go#L1055: func (z *Int) SetBit(x *Int, i int, b uint) *Int {
int.go#L1072: func (z *Int) And(x, y *Int) *Int {
int.go#L1102: func (z *Int) AndNot(x, y *Int) *Int {
int.go#L1135: func (z *Int) Or(x, y *Int) *Int {
int.go#L1165: func (z *Int) Xor(x, y *Int) *Int {
int.go#L1195: func (z *Int) Not(x *Int) *Int {
int.go#L1211: func (z *Int) Sqrt(x *Int) *Int {
intconv.go#L21: func (x *Int) Text(base int) string {
intconv.go#L30: func (x *Int) Append(buf []byte, base int) []byte {
intconv.go#L39: func (x *Int) String() string {
intconv.go#L67: func (x *Int) Format(s fmt.State, ch rune) {
intconv.go#L182: func (z *Int) scan(r io.ByteScanner, base int) (*Int, int, error) {
intconv.go#L238: func (z *Int) Scan(s fmt.ScanState, ch rune) error {
intmarsh.go#L18: func (x *Int) GobEncode() ([]byte, error) {
intmarsh.go#L33: func (z *Int) GobDecode(buf []byte) error {
intmarsh.go#L36: *z = Int{}
intmarsh.go#L49: func (x *Int) MarshalText() (text []byte, err error) {
intmarsh.go#L57: func (z *Int) UnmarshalText(text []byte) error {
intmarsh.go#L69: func (x *Int) MarshalJSON() ([]byte, error) {
intmarsh.go#L74: func (z *Int) UnmarshalJSON(text []byte) error {
prime.go#L26: func (x *Int) ProbablyPrime(n int) bool {
prime.go#L171: intD := &Int{abs: d}
prime.go#L172: intN := &Int{abs: n}
rat.go#L29: a, b Int
rat.go#L303: func (z *Rat) SetFrac(a, b *Int) *Rat {
rat.go#L333: func (z *Rat) SetInt(x *Int) *Rat {
rat.go#L409: func (x *Rat) Num() *Int {
rat.go#L420: func (x *Rat) Denom() *Int {
rat.go#L426: return &Int{abs: nat{1}}
rat.go#L471: func (z *Int) scaleDenom(x *Int, f nat) {
rat.go#L487: var a, b Int
rat.go#L495: var a1, a2 Int
rat.go#L505: var a1, a2 Int
rat.go#L537: var a, b Int
crypto/dsa
dsa.go#L27: P, Q, G *big.Int
dsa.go#L33: Y *big.Int
dsa.go#L39: X *big.Int
dsa.go#L92: q := new(big.Int)
dsa.go#L93: p := new(big.Int)
dsa.go#L94: rem := new(big.Int)
dsa.go#L95: one := new(big.Int)
dsa.go#L138: h := new(big.Int)
dsa.go#L140: g := new(big.Int)
dsa.go#L142: pm1 := new(big.Int).Sub(p, one)
dsa.go#L143: e := new(big.Int).Div(pm1, q)
dsa.go#L164: x := new(big.Int)
dsa.go#L179: priv.Y = new(big.Int)
dsa.go#L188: func fermatInverse(k, P *big.Int) *big.Int {
dsa.go#L190: pMinus2 := new(big.Int).Sub(P, two)
dsa.go#L191: return new(big.Int).Exp(k, pMinus2, P)
dsa.go#L205: func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
dsa.go#L219: k := new(big.Int)
dsa.go#L238: r = new(big.Int).Exp(priv.G, k, priv.P)
dsa.go#L247: s = new(big.Int).Mul(priv.X, r)
dsa.go#L273: func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
dsa.go#L287: w := new(big.Int).ModInverse(s, pub.Q)
dsa.go#L296: z := new(big.Int).SetBytes(hash)
dsa.go#L298: u1 := new(big.Int).Mul(z, w)
crypto/ecdsa
ecdsa.go#L40: Inverse(k *big.Int) *big.Int
ecdsa.go#L46: CombinedMult(Px, Py *big.Int, s1, s2 []byte) (x, y *big.Int)
ecdsa.go#L56: X, Y *big.Int
ecdsa.go#L83: D *big.Int
ecdsa.go#L123: var one = new(big.Int).SetInt64(1)
ecdsa.go#L127: func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
ecdsa.go#L137: k = new(big.Int).SetBytes(b)
ecdsa.go#L138: n := new(big.Int).Sub(params.N, one)
ecdsa.go#L161: func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
ecdsa.go#L168: ret := new(big.Int).SetBytes(hash)
ecdsa.go#L181: func fermatInverse(k, N *big.Int) *big.Int {
ecdsa.go#L183: nMinus2 := new(big.Int).Sub(N, two)
ecdsa.go#L184: return new(big.Int).Exp(k, nMinus2, N)
ecdsa.go#L194: func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
ecdsa.go#L240: func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
ecdsa.go#L246: var k, kInv *big.Int
ecdsa.go#L269: s = new(big.Int).Mul(priv.D, r)
ecdsa.go#L292: func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
ecdsa.go#L305: func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool {
ecdsa.go#L308: var w *big.Int
ecdsa.go#L313: w = new(big.Int).ModInverse(s, N)
ecdsa.go#L322: var x, y *big.Int
ecdsa.go#L342: r, s = &big.Int{}, &big.Int{}
ecdsa_noasm.go#L15: func sign(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
ecdsa_noasm.go#L19: func verify(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool {
crypto/elliptic
elliptic.go#L27: IsOnCurve(x, y *big.Int) bool
elliptic.go#L29: Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int)
elliptic.go#L31: Double(x1, y1 *big.Int) (x, y *big.Int)
elliptic.go#L33: ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int)
elliptic.go#L36: ScalarBaseMult(k []byte) (x, y *big.Int)
elliptic.go#L51: P *big.Int // the order of the underlying field
elliptic.go#L52: N *big.Int // the order of the base point
elliptic.go#L53: B *big.Int // the constant of the curve equation
elliptic.go#L54: Gx, Gy *big.Int // (x,y) of the base point
elliptic.go#L71: func (curve *CurveParams) polynomial(x *big.Int) *big.Int {
elliptic.go#L72: x3 := new(big.Int).Mul(x, x)
elliptic.go#L75: threeX := new(big.Int).Lsh(x, 1)
elliptic.go#L85: func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
elliptic.go#L98: y2 := new(big.Int).Mul(y, y)
elliptic.go#L107: func zForAffine(x, y *big.Int) *big.Int {
elliptic.go#L108: z := new(big.Int)
elliptic.go#L117: func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
elliptic.go#L119: return new(big.Int), new(big.Int)
elliptic.go#L122: zinv := new(big.Int).ModInverse(z, curve.P)
elliptic.go#L123: zinvsq := new(big.Int).Mul(zinv, zinv)
elliptic.go#L125: xOut = new(big.Int).Mul(x, zinvsq)
elliptic.go#L128: yOut = new(big.Int).Mul(y, zinvsq)
elliptic.go#L133: func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
elliptic.go#L147: func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
elliptic.go#L149: x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
elliptic.go#L163: z1z1 := new(big.Int).Mul(z1, z1)
elliptic.go#L165: z2z2 := new(big.Int).Mul(z2, z2)
elliptic.go#L168: u1 := new(big.Int).Mul(x1, z2z2)
elliptic.go#L170: u2 := new(big.Int).Mul(x2, z1z1)
elliptic.go#L172: h := new(big.Int).Sub(u2, u1)
elliptic.go#L177: i := new(big.Int).Lsh(h, 1)
elliptic.go#L179: j := new(big.Int).Mul(h, i)
elliptic.go#L181: s1 := new(big.Int).Mul(y1, z2)
elliptic.go#L184: s2 := new(big.Int).Mul(y2, z1)
elliptic.go#L187: r := new(big.Int).Sub(s2, s1)
elliptic.go#L196: v := new(big.Int).Mul(u1, i)
elliptic.go#L223: func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
elliptic.go#L236: func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
elliptic.go#L238: delta := new(big.Int).Mul(z, z)
elliptic.go#L240: gamma := new(big.Int).Mul(y, y)
elliptic.go#L242: alpha := new(big.Int).Sub(x, delta)
elliptic.go#L246: alpha2 := new(big.Int).Add(x, delta)
elliptic.go#L254: x3 := new(big.Int).Mul(alpha, alpha)
elliptic.go#L255: beta8 := new(big.Int).Lsh(beta, 3)
elliptic.go#L263: z3 := new(big.Int).Add(y, z)
elliptic.go#L295: func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
elliptic.go#L302: Bz := new(big.Int).SetInt64(1)
elliptic.go#L303: x, y, z := new(big.Int), new(big.Int), new(big.Int)
elliptic.go#L318: func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
elliptic.go#L332: func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error) {
elliptic.go#L351: if new(big.Int).SetBytes(priv).Cmp(N) >= 0 {
elliptic.go#L363: func Marshal(curve Curve, x, y *big.Int) []byte {
elliptic.go#L378: func MarshalCompressed(curve Curve, x, y *big.Int) []byte {
elliptic.go#L389: func Unmarshal(curve Curve, data []byte) (x, y *big.Int) {
elliptic.go#L398: x = new(big.Int).SetBytes(data[1 : 1+byteLen])
elliptic.go#L399: y = new(big.Int).SetBytes(data[1+byteLen:])
elliptic.go#L412: func UnmarshalCompressed(curve Curve, data []byte) (x, y *big.Int) {
elliptic.go#L421: x = new(big.Int).SetBytes(data[1:])
p224.go#L47: func (curve p224Curve) IsOnCurve(x, y *big.Int) bool {
p224.go#L57: func p224PointFromAffine(x, y *big.Int) (p *nistec.P224Point, ok bool) {
p224.go#L77: func p224PointToAffine(p *nistec.P224Point) (x, y *big.Int) {
p224.go#L82: return new(big.Int), new(big.Int)
p224.go#L100: func p224RandomPoint() (x, y *big.Int) {
p224.go#L108: func (p224Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
p224.go#L120: func (p224Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
p224.go#L128: func (p224Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
p224.go#L136: func (p224Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) {
p256_asm.go#L42: p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
p256_asm.go#L43: p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
p256_asm.go#L44: p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
p256_asm.go#L45: p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
p256_asm.go#L46: p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
p256_asm.go#L114: func (curve p256Curve) Inverse(k *big.Int) *big.Int {
p256_asm.go#L117: k = new(big.Int).Neg(k)
p256_asm.go#L122: k = new(big.Int).Mod(k, p256.N)
p256_asm.go#L198: return new(big.Int).SetBytes(xOut)
p256_asm.go#L202: func fromBig(out []uint64, big *big.Int) {
p256_asm.go#L216: n := new(big.Int).SetBytes(in)
p256_asm.go#L229: func maybeReduceModP(in *big.Int) *big.Int {
p256_asm.go#L233: return new(big.Int).Mod(in, p256.P)
p256_asm.go#L236: func (curve p256Curve) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) {
p256_asm.go#L268: func (curve p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
p256_asm.go#L277: func (curve p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
p256_asm.go#L314: func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
p256_asm.go#L332: return new(big.Int).SetBytes(xOut), new(big.Int).SetBytes(yOut)
p384.go#L52: func (curve p384Curve) IsOnCurve(x, y *big.Int) bool {
p384.go#L62: func p384PointFromAffine(x, y *big.Int) (p *nistec.P384Point, ok bool) {
p384.go#L82: func p384PointToAffine(p *nistec.P384Point) (x, y *big.Int) {
p384.go#L87: return new(big.Int), new(big.Int)
p384.go#L105: func p384RandomPoint() (x, y *big.Int) {
p384.go#L113: func (p384Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
p384.go#L125: func (p384Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
p384.go#L133: func (p384Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
p384.go#L141: func (p384Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) {
p521.go#L57: func (curve p521Curve) IsOnCurve(x, y *big.Int) bool {
p521.go#L67: func p521PointFromAffine(x, y *big.Int) (p *nistec.P521Point, ok bool) {
p521.go#L87: func p521PointToAffine(p *nistec.P521Point) (x, y *big.Int) {
p521.go#L92: return new(big.Int), new(big.Int)
p521.go#L110: func p521RandomPoint() (x, y *big.Int) {
p521.go#L118: func (p521Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
p521.go#L130: func (p521Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
p521.go#L138: func (p521Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
p521.go#L146: func (p521Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) {
p521.go#L151: func bigFromDecimal(s string) *big.Int {
p521.go#L152: b, ok := new(big.Int).SetString(s, 10)
p521.go#L159: func bigFromHex(s string) *big.Int {
p521.go#L160: b, ok := new(big.Int).SetString(s, 16)
crypto/rand
util.go#L26: var smallPrimesProduct = new(big.Int).SetUint64(16294579238595022365)
util.go#L31: func Prime(rand io.Reader, bits int) (p *big.Int, err error) {
util.go#L43: p = new(big.Int)
util.go#L45: bigMod := new(big.Int)
util.go#L106: func Int(rand io.Reader, max *big.Int) (n *big.Int, err error) {
util.go#L110: n = new(big.Int)
crypto/rsa
pkcs1v15.go#L61: m := new(big.Int).SetBytes(em)
pkcs1v15.go#L62: c := encrypt(new(big.Int), pub, m)
pkcs1v15.go#L146: c := new(big.Int).SetBytes(ciphertext)
pkcs1v15.go#L252: m := new(big.Int).SetBytes(em)
pkcs1v15.go#L285: c := new(big.Int).SetBytes(sig)
pkcs1v15.go#L286: m := encrypt(new(big.Int), pub, c)
pss.go#L216: m := new(big.Int).SetBytes(em)
pss.go#L294: s := new(big.Int).SetBytes(sig)
pss.go#L295: m := encrypt(new(big.Int), pub, s)
rsa.go#L43: N *big.Int // modulus
rsa.go#L102: D *big.Int // private exponent
rsa.go#L103: Primes []*big.Int // prime factors of N, has >= 2 elements.
rsa.go#L184: Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
rsa.go#L185: Qinv *big.Int // Q^-1 mod P
rsa.go#L196: Exp *big.Int // D mod (prime-1).
rsa.go#L197: Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
rsa.go#L198: R *big.Int // product of primes prior to this (inc p and q).
rsa.go#L209: modulus := new(big.Int).Set(bigOne)
rsa.go#L226: congruence := new(big.Int)
rsa.go#L227: de := new(big.Int).SetInt64(int64(priv.E))
rsa.go#L230: pminus1 := new(big.Int).Sub(prime, bigOne)
rsa.go#L281: primes := make([]*big.Int, nprimes)
rsa.go#L318: n := new(big.Int).Set(bigOne)
rsa.go#L319: totient := new(big.Int).Set(bigOne)
rsa.go#L320: pminus1 := new(big.Int)
rsa.go#L333: priv.D = new(big.Int)
rsa.go#L387: func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
rsa.go#L440: m := new(big.Int)
rsa.go#L442: c := encrypt(new(big.Int), pub, m)
rsa.go#L463: priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
rsa.go#L466: priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
rsa.go#L469: priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
rsa.go#L471: r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
rsa.go#L477: values.Exp = new(big.Int).Sub(prime, bigOne)
rsa.go#L480: values.R = new(big.Int).Set(r)
rsa.go#L481: values.Coeff = new(big.Int).ModInverse(r, prime)
rsa.go#L489: func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
rsa.go#L499: var ir *big.Int
rsa.go#L508: var r *big.Int
rsa.go#L509: ir = new(big.Int)
rsa.go#L524: rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0
rsa.go#L525: cCopy := new(big.Int).Set(c)
rsa.go#L532: m = new(big.Int).Exp(c, priv.D, priv.N)
rsa.go#L535: m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
rsa.go#L536: m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
rsa.go#L569: func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
rsa.go#L577: check := encrypt(new(big.Int), &priv.PublicKey, m)
rsa.go#L606: c := new(big.Int).SetBytes(ciphertext)
crypto/tls
key_schedule.go#L154: x, y *big.Int // public key
crypto/x509
parser.go#L249: p := &pkcs1PublicKey{N: new(big.Int)}
parser.go#L303: y := new(big.Int)
parser.go#L310: P: new(big.Int),
parser.go#L311: Q: new(big.Int),
parser.go#L312: G: new(big.Int),
parser.go#L852: serial := new(big.Int)
pkcs1.go#L17: N *big.Int
pkcs1.go#L19: D *big.Int
pkcs1.go#L20: P *big.Int
pkcs1.go#L21: Q *big.Int
pkcs1.go#L23: Dp *big.Int `asn1:"optional"`
pkcs1.go#L24: Dq *big.Int `asn1:"optional"`
pkcs1.go#L25: Qinv *big.Int `asn1:"optional"`
pkcs1.go#L31: Prime *big.Int
pkcs1.go#L34: Exp *big.Int
pkcs1.go#L35: Coeff *big.Int
pkcs1.go#L40: N *big.Int
pkcs1.go#L78: key.Primes = make([]*big.Int, 2+len(priv.AdditionalPrimes))
sec1.go#L93: k := new(big.Int).SetBytes(privKey.PrivateKey)
x509.go#L150: SerialNumber *big.Int
x509.go#L162: P, Q, G *big.Int
x509.go#L642: SerialNumber *big.Int
x509.go#L2104: Number *big.Int
crypto/x509/pkix
pkix.go#L313: SerialNumber *big.Int
encoding/asn1
asn1.go#L134: func parseBigInt(bytes []byte) (*big.Int, error) {
asn1.go#L138: ret := new(big.Int)
asn1.go#L663: bigIntType = reflect.TypeOf(new(big.Int))
asn1.go#L881: case **big.Int:
marshal.go#L197: func makeBigInt(n *big.Int) (encoder, error) {
marshal.go#L207: nMinus1 := new(big.Int).Neg(n)
marshal.go#L476: return makeBigInt(value.Interface().(*big.Int))
github.com/aws/aws-sdk-go-v2/internal/v4a
v4a.go#L53: nMinusTwoP256 *big.Int
v4a.go#L55: one = new(big.Int).SetInt64(1)
v4a.go#L62: nMinusTwoP256 = new(big.Int).SetBytes(p256.Params().N.Bytes())
v4a.go#L63: nMinusTwoP256 = nMinusTwoP256.Sub(nMinusTwoP256, new(big.Int).SetInt64(2))
v4a.go#L117: d := new(big.Int)
github.com/aws/aws-sdk-go-v2/internal/v4a/internal/crypto
ecc.go#L17: R, S *big.Int
ecc.go#L23: return ECDSAKeyFromPoint(curve, (&big.Int{}).SetBytes(d))
ecc.go#L28: func ECDSAKeyFromPoint(curve elliptic.Curve, d *big.Int) *ecdsa.PrivateKey {
ecc.go#L46: xPoint := (&big.Int{}).SetBytes(x)
ecc.go#L47: yPoint := (&big.Int{}).SetBytes(y)
github.com/aws/smithy-go/document
document.go#L147: func (n Number) BigInt() (*big.Int, error) {
document.go#L148: f, ok := (&big.Int{}).SetString(string(n), 10)
github.com/aws/smithy-go/encoding/httpbinding
header.go#L105: func (h HeaderValue) BigInteger(v *big.Int) {
query.go#L96: func (qv QueryValue) BigInteger(v *big.Int) {
uri.go#L84: func (u URIValue) BigInteger(v *big.Int) error {
github.com/aws/smithy-go/encoding/xml
value.go#L175: func (xv Value) BigInteger(v *big.Int) {
go/constant
value.go#L98: intVal struct{ val *big.Int } // Int values not representable as an int64
value.go#L270: func newInt() *big.Int { return new(big.Int) }
value.go#L282: func makeInt(x *big.Int) Value {
value.go#L350: func smallInt(x *big.Int) bool {
value.go#L621: case *big.Int:
golang.org/x/tools/internal/gcimporter
bexport.go#L658: return new(big.Rat).SetInt(new(big.Int).SetBytes(bytes))
iexport.go#L920: var i big.Int
iexport.go#L992: func (w *exportWriter) mpint(x *big.Int, typ types.Type) {
iimport.go#L602: var x big.Int
iimport.go#L653: func (r *importReader) mpint(x *big.Int, typ *types.Basic) {
iimport.go#L693: var mant big.Int
golang.org/x/tools/internal/pkgbits
decoder.go#L461: func (r *Decoder) bigInt() *big.Int {
decoder.go#L462: v := new(big.Int).SetBytes([]byte(r.String()))
encoder.go#L361: case *big.Int:
encoder.go#L374: func (w *Encoder) bigInt(v *big.Int) {
vendor/golang.org/x/crypto/cryptobyte
asn1.go#L67: func (b *Builder) AddASN1BigInt(n *big.Int) {
asn1.go#L78: nMinus1 := new(big.Int).Neg(n)
asn1.go#L267: var bigIntType = reflect.TypeOf((*big.Int)(nil)).Elem()
asn1.go#L293: return s.readASN1BigInt(out.(*big.Int))
asn1.go#L316: func (s *String) readASN1BigInt(out *big.Int) bool {
asn1.go#L684: out.(*big.Int).Set(defaultValue.(*big.Int))