type math/big.Int
503 uses
math/big (current package)
float.go#L599: func (z *Float) SetInt(x *Int) *Float {
float.go#L1080: func (x *Float) Int(z *Int) (*Int, Accuracy) {
float.go#L1086: z = new(Int)
float.go#L1108: z = new(Int)
int.go#L33: type Int struct {
int.go#L38: var intOne = &Int{false, natOne}
int.go#L44: func (x *Int) Sign() int {
int.go#L58: func (z *Int) SetInt64(x int64) *Int {
int.go#L70: func (z *Int) SetUint64(x uint64) *Int {
int.go#L77: func NewInt(x int64) *Int {
int.go#L91: return &Int{neg: x < 0, abs: abs}
int.go#L95: func (z *Int) Set(x *Int) *Int {
int.go#L108: func (x *Int) Bits() []Word {
int.go#L120: func (z *Int) SetBits(abs []Word) *Int {
int.go#L127: func (z *Int) Abs(x *Int) *Int {
int.go#L134: func (z *Int) Neg(x *Int) *Int {
int.go#L141: func (z *Int) Add(x, y *Int) *Int {
int.go#L162: func (z *Int) Sub(x, y *Int) *Int {
int.go#L183: func (z *Int) Mul(x, y *Int) *Int {
int.go#L191: func (z *Int) mul(stk *stack, x, y *Int) {
int.go#L208: func (z *Int) MulRange(a, b int64) *Int {
int.go#L229: func (z *Int) Binomial(n, k int64) *Int {
int.go#L258: var N, K, i, t Int
int.go#L273: func (z *Int) Quo(x, y *Int) *Int {
int.go#L282: func (z *Int) Rem(x, y *Int) *Int {
int.go#L299: func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
int.go#L308: func (z *Int) Div(x, y *Int) *Int {
int.go#L310: var r Int
int.go#L325: func (z *Int) Mod(x, y *Int) *Int {
int.go#L328: y0 = new(Int).Set(y)
int.go#L330: var q Int
int.go#L356: func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
int.go#L359: y0 = new(Int).Set(y)
int.go#L378: func (x *Int) Cmp(y *Int) (r int) {
int.go#L403: func (x *Int) CmpAbs(y *Int) int {
int.go#L429: func (x *Int) Int64() int64 {
int.go#L439: func (x *Int) Uint64() uint64 {
int.go#L444: func (x *Int) IsInt64() bool {
int.go#L453: func (x *Int) IsUint64() bool {
int.go#L459: func (x *Int) Float64() (float64, Accuracy) {
int.go#L499: func (z *Int) SetString(s string, base int) (*Int, bool) {
int.go#L505: func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {
int.go#L518: func (z *Int) SetBytes(buf []byte) *Int {
int.go#L527: func (x *Int) Bytes() []byte {
int.go#L539: func (x *Int) FillBytes(buf []byte) []byte {
int.go#L548: func (x *Int) BitLen() int {
int.go#L557: func (x *Int) TrailingZeroBits() uint {
int.go#L567: func (z *Int) Exp(x, y, m *Int) *Int {
int.go#L571: func (z *Int) expSlow(x, y, m *Int) *Int {
int.go#L575: func (z *Int) exp(x, y, m *Int, slow bool) *Int {
int.go#L583: inverse := new(Int).ModInverse(x, m)
int.go#L594: m = new(Int).Set(m)
int.go#L621: func (z *Int) GCD(x, y, a, b *Int) *Int {
int.go#L664: func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {
int.go#L717: func lehmerUpdate(A, B, q, r *Int, u0, u1, v0, v1 Word, even bool) {
int.go#L728: func mulW(z, x *Int, neg bool, w Word) {
int.go#L736: func euclidUpdate(A, B, Ua, Ub, q, r *Int, extended bool) (nA, nB, nr, nUa, nUb *Int) {
int.go#L759: func (z *Int) lehmerGCD(x, y, a, b *Int) *Int {
int.go#L760: var A, B, Ua, Ub *Int
int.go#L762: A = new(Int).Abs(a)
int.go#L763: B = new(Int).Abs(b)
int.go#L769: Ua = new(Int).SetInt64(1)
int.go#L770: Ub = new(Int)
int.go#L774: q := new(Int)
int.go#L775: r := new(Int)
int.go#L874: func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
int.go#L890: func (z *Int) ModInverse(g, n *Int) *Int {
int.go#L893: var n2 Int
int.go#L897: var g2 Int
int.go#L900: var d, x Int
int.go#L920: return (&Int{abs: z}).ModInverse(&Int{abs: g}, &Int{abs: n}).abs
int.go#L925: func Jacobi(x, y *Int) int {
int.go#L934: var a, b, c Int
int.go#L986: func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
int.go#L987: e := new(Int).Add(p, intOne) // e = p + 1
int.go#L1001: func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int {
int.go#L1004: e := new(Int).Rsh(p, 3) // e = (p - 5) / 8
int.go#L1005: tx := new(Int).Lsh(x, 1) // tx = 2*x
int.go#L1006: alpha := new(Int).Exp(tx, e, p)
int.go#L1007: beta := new(Int).Mul(alpha, alpha)
int.go#L1021: func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
int.go#L1023: var s Int
int.go#L1029: var n Int
int.go#L1039: var y, b, g, t Int
int.go#L1072: func (z *Int) ModSqrt(x, p *Int) *Int {
int.go#L1082: x = new(Int).Mod(x, p)
int.go#L1099: func (z *Int) Lsh(x *Int, n uint) *Int {
int.go#L1106: func (z *Int) Rsh(x *Int, n uint) *Int {
int.go#L1123: func (x *Int) Bit(i int) uint {
int.go#L1147: func (z *Int) SetBit(x *Int, i int, b uint) *Int {
int.go#L1164: func (z *Int) And(x, y *Int) *Int {
int.go#L1194: func (z *Int) AndNot(x, y *Int) *Int {
int.go#L1227: func (z *Int) Or(x, y *Int) *Int {
int.go#L1257: func (z *Int) Xor(x, y *Int) *Int {
int.go#L1287: func (z *Int) Not(x *Int) *Int {
int.go#L1303: func (z *Int) Sqrt(x *Int) *Int {
intconv.go#L21: func (x *Int) Text(base int) string {
intconv.go#L30: func (x *Int) Append(buf []byte, base int) []byte {
intconv.go#L39: func (x *Int) String() string {
intconv.go#L66: func (x *Int) Format(s fmt.State, ch rune) {
intconv.go#L180: func (z *Int) scan(r io.ByteScanner, base int) (*Int, int, error) {
intconv.go#L236: func (z *Int) Scan(s fmt.ScanState, ch rune) error {
intmarsh.go#L18: func (x *Int) GobEncode() ([]byte, error) {
intmarsh.go#L33: func (z *Int) GobDecode(buf []byte) error {
intmarsh.go#L36: *z = Int{}
intmarsh.go#L49: func (x *Int) AppendText(b []byte) (text []byte, err error) {
intmarsh.go#L54: func (x *Int) MarshalText() (text []byte, err error) {
intmarsh.go#L59: func (z *Int) UnmarshalText(text []byte) error {
intmarsh.go#L71: func (x *Int) MarshalJSON() ([]byte, error) {
intmarsh.go#L79: func (z *Int) UnmarshalJSON(text []byte) error {
natmul.go#L197: x0, x1 := &Int{abs: x[:n2].norm()}, &Int{abs: x[n2:].norm()}
natmul.go#L198: y0, y1 := &Int{abs: y[:n2].norm()}, &Int{abs: y[n2:].norm()}
natmul.go#L199: z0 := &Int{abs: z[0 : 2*n2]}
natmul.go#L200: z2 := &Int{abs: z[2*n2:]}
natmul.go#L204: z1 := &Int{abs: stk.nat(2*n2 + 1)}
natmul.go#L205: tx := &Int{abs: z[0:n2]}
natmul.go#L206: ty := &Int{abs: z[n2 : 2*n2]}
natmul.go#L226: z0 = new(Int)
natmul.go#L228: tx = new(Int).Sub(x1, x0)
natmul.go#L229: ty = new(Int).Sub(y0, y1)
natmul.go#L230: z2 = new(Int)
natmul.go#L233: trace("x ", &Int{abs: x})
natmul.go#L234: trace("y ", &Int{abs: y})
natmul.go#L235: trace("z ", &Int{abs: z})
natmul.go#L236: trace("zz", &Int{abs: zz})
natmul.go#L286: x0, x1 := &Int{abs: x[:n2].norm()}, &Int{abs: x[n2:].norm()}
natmul.go#L287: z0 := &Int{abs: z[0 : 2*n2]}
natmul.go#L288: z2 := &Int{abs: z[2*n2:]}
natmul.go#L292: z1 := &Int{abs: stk.nat(2*n2 + 1)}
natmul.go#L293: tx := &Int{abs: z[0:n2]}
natmul.go#L313: tx = new(Int).Sub(x0, x1)
natmul.go#L314: z0 = new(Int).Mul(x0, x0)
natmul.go#L315: z2 = new(Int).Mul(x1, x1)
natmul.go#L316: z1 = new(Int).Mul(tx, tx)
natmul.go#L321: trace("x ", &Int{abs: x})
natmul.go#L322: trace("z ", &Int{abs: z})
natmul.go#L323: trace("zz", &Int{abs: zz})
natmul.go#L335: func ifmt(x *Int) string {
natmul.go#L353: func trace(name string, x *Int) {
prime.go#L26: func (x *Int) ProbablyPrime(n int) bool {
prime.go#L173: intD := &Int{abs: d}
prime.go#L174: intN := &Int{abs: n}
rat.go#L29: a, b Int
rat.go#L307: func (z *Rat) SetFrac(a, b *Int) *Rat {
rat.go#L337: func (z *Rat) SetInt(x *Int) *Rat {
rat.go#L411: func (x *Rat) Num() *Int {
rat.go#L422: func (x *Rat) Denom() *Int {
rat.go#L428: return &Int{abs: nat{1}}
rat.go#L475: func (z *Int) scaleDenom(stk *stack, x *Int, f nat) {
rat.go#L489: var a, b Int
rat.go#L502: var a1, a2 Int
rat.go#L515: var a1, a2 Int
rat.go#L554: var a, b Int
crypto/dsa
dsa.go#L28: P, Q, G *big.Int
dsa.go#L34: Y *big.Int
dsa.go#L40: X *big.Int
dsa.go#L97: q := new(big.Int)
dsa.go#L98: p := new(big.Int)
dsa.go#L99: rem := new(big.Int)
dsa.go#L100: one := new(big.Int)
dsa.go#L143: h := new(big.Int)
dsa.go#L145: g := new(big.Int)
dsa.go#L147: pm1 := new(big.Int).Sub(p, one)
dsa.go#L148: e := new(big.Int).Div(pm1, q)
dsa.go#L173: x := new(big.Int)
dsa.go#L188: priv.Y = new(big.Int)
dsa.go#L197: func fermatInverse(k, P *big.Int) *big.Int {
dsa.go#L199: pMinus2 := new(big.Int).Sub(P, two)
dsa.go#L200: return new(big.Int).Exp(k, pMinus2, P)
dsa.go#L214: func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
dsa.go#L232: k := new(big.Int)
dsa.go#L251: r = new(big.Int).Exp(priv.G, k, priv.P)
dsa.go#L260: s = new(big.Int).Mul(priv.X, r)
dsa.go#L286: func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
dsa.go#L304: w := new(big.Int).ModInverse(s, pub.Q)
dsa.go#L313: z := new(big.Int).SetBytes(hash)
dsa.go#L315: u1 := new(big.Int).Mul(z, w)
crypto/ecdsa
ecdsa.go#L56: X, Y *big.Int
ecdsa.go#L182: D *big.Int
ecdsa.go#L231: func bigIntEqual(a, b *big.Int) bool {
ecdsa.go#L565: return &PrivateKey{PublicKey: *pub, D: new(big.Int).SetBytes(priv.Bytes())}, nil
ecdsa.go#L605: func pointFromAffine(curve elliptic.Curve, x, y *big.Int) ([]byte, error) {
ecdsa.go#L624: func pointToAffine(curve elliptic.Curve, p []byte) (x, y *big.Int, err error) {
ecdsa.go#L630: x = new(big.Int).SetBytes(p[1 : 1+byteLen])
ecdsa.go#L631: y = new(big.Int).SetBytes(p[1+byteLen:])
ecdsa_legacy.go#L42: func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
ecdsa_legacy.go#L49: ret := new(big.Int).SetBytes(hash)
ecdsa_legacy.go#L64: func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
ecdsa_legacy.go#L70: r, s = new(big.Int), new(big.Int)
ecdsa_legacy.go#L108: var k, kInv, r, s *big.Int
ecdsa_legacy.go#L116: kInv = new(big.Int).ModInverse(k, N)
ecdsa_legacy.go#L126: s = new(big.Int).Mul(priv.D, r)
ecdsa_legacy.go#L144: func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
ecdsa_legacy.go#L164: r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes)
ecdsa_legacy.go#L178: w := new(big.Int).ModInverse(s, N)
ecdsa_legacy.go#L196: var one = new(big.Int).SetInt64(1)
ecdsa_legacy.go#L200: func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
ecdsa_legacy.go#L210: k = new(big.Int).SetBytes(b)
crypto/elliptic
elliptic.go#L40: IsOnCurve(x, y *big.Int) bool
elliptic.go#L45: Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int)
elliptic.go#L50: Double(x1, y1 *big.Int) (x, y *big.Int)
elliptic.go#L57: ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int)
elliptic.go#L65: ScalarBaseMult(k []byte) (x, y *big.Int)
elliptic.go#L75: func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error) {
elliptic.go#L94: if new(big.Int).SetBytes(priv).Cmp(N) >= 0 {
elliptic.go#L109: func Marshal(curve Curve, x, y *big.Int) []byte {
elliptic.go#L126: func MarshalCompressed(curve Curve, x, y *big.Int) []byte {
elliptic.go#L140: Unmarshal([]byte) (x, y *big.Int)
elliptic.go#L141: UnmarshalCompressed([]byte) (x, y *big.Int)
elliptic.go#L153: func Unmarshal(curve Curve, data []byte) (x, y *big.Int) {
elliptic.go#L166: x = new(big.Int).SetBytes(data[1 : 1+byteLen])
elliptic.go#L167: y = new(big.Int).SetBytes(data[1+byteLen:])
elliptic.go#L180: func UnmarshalCompressed(curve Curve, data []byte) (x, y *big.Int) {
elliptic.go#L193: x = new(big.Int).SetBytes(data[1:])
elliptic.go#L212: func panicIfNotOnCurve(curve Curve, x, y *big.Int) {
nistec.go#L125: func (curve *nistCurve[Point]) IsOnCurve(x, y *big.Int) bool {
nistec.go#L135: func (curve *nistCurve[Point]) pointFromAffine(x, y *big.Int) (p Point, err error) {
nistec.go#L157: func (curve *nistCurve[Point]) pointToAffine(p Point) (x, y *big.Int) {
nistec.go#L162: return new(big.Int), new(big.Int)
nistec.go#L165: x = new(big.Int).SetBytes(out[1 : 1+byteLen])
nistec.go#L166: y = new(big.Int).SetBytes(out[1+byteLen:])
nistec.go#L170: func (curve *nistCurve[Point]) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
nistec.go#L182: func (curve *nistCurve[Point]) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
nistec.go#L197: s := new(big.Int).SetBytes(scalar)
nistec.go#L205: func (curve *nistCurve[Point]) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
nistec.go#L218: func (curve *nistCurve[Point]) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) {
nistec.go#L227: func (curve *nistCurve[Point]) Unmarshal(data []byte) (x, y *big.Int) {
nistec.go#L240: x = new(big.Int).SetBytes(data[1 : 1+byteLen])
nistec.go#L241: y = new(big.Int).SetBytes(data[1+byteLen:])
nistec.go#L245: func (curve *nistCurve[Point]) UnmarshalCompressed(data []byte) (x, y *big.Int) {
nistec.go#L256: func bigFromDecimal(s string) *big.Int {
nistec.go#L257: b, ok := new(big.Int).SetString(s, 10)
nistec.go#L264: func bigFromHex(s string) *big.Int {
nistec.go#L265: b, ok := new(big.Int).SetString(s, 16)
params.go#L16: P *big.Int // the order of the underlying field
params.go#L17: N *big.Int // the order of the base point
params.go#L18: B *big.Int // the constant of the curve equation
params.go#L19: Gx, Gy *big.Int // (x,y) of the base point
params.go#L36: func (curve *CurveParams) polynomial(x *big.Int) *big.Int {
params.go#L37: x3 := new(big.Int).Mul(x, x)
params.go#L40: threeX := new(big.Int).Lsh(x, 1)
params.go#L56: func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
params.go#L69: y2 := new(big.Int).Mul(y, y)
params.go#L78: func zForAffine(x, y *big.Int) *big.Int {
params.go#L79: z := new(big.Int)
params.go#L88: func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
params.go#L90: return new(big.Int), new(big.Int)
params.go#L93: zinv := new(big.Int).ModInverse(z, curve.P)
params.go#L94: zinvsq := new(big.Int).Mul(zinv, zinv)
params.go#L96: xOut = new(big.Int).Mul(x, zinvsq)
params.go#L99: yOut = new(big.Int).Mul(y, zinvsq)
params.go#L110: func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
params.go#L126: func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
params.go#L128: x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
params.go#L142: z1z1 := new(big.Int).Mul(z1, z1)
params.go#L144: z2z2 := new(big.Int).Mul(z2, z2)
params.go#L147: u1 := new(big.Int).Mul(x1, z2z2)
params.go#L149: u2 := new(big.Int).Mul(x2, z1z1)
params.go#L151: h := new(big.Int).Sub(u2, u1)
params.go#L156: i := new(big.Int).Lsh(h, 1)
params.go#L158: j := new(big.Int).Mul(h, i)
params.go#L160: s1 := new(big.Int).Mul(y1, z2)
params.go#L163: s2 := new(big.Int).Mul(y2, z1)
params.go#L166: r := new(big.Int).Sub(s2, s1)
params.go#L175: v := new(big.Int).Mul(u1, i)
params.go#L208: func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
params.go#L222: func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
params.go#L224: delta := new(big.Int).Mul(z, z)
params.go#L226: gamma := new(big.Int).Mul(y, y)
params.go#L228: alpha := new(big.Int).Sub(x, delta)
params.go#L232: alpha2 := new(big.Int).Add(x, delta)
params.go#L240: x3 := new(big.Int).Mul(alpha, alpha)
params.go#L241: beta8 := new(big.Int).Lsh(beta, 3)
params.go#L249: z3 := new(big.Int).Add(y, z)
params.go#L287: func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
params.go#L295: Bz := new(big.Int).SetInt64(1)
params.go#L296: x, y, z := new(big.Int), new(big.Int), new(big.Int)
params.go#L317: func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
crypto/internal/boring/bbig
big.go#L13: func Enc(b *big.Int) boring.BigInt {
big.go#L24: func Dec(b boring.BigInt) *big.Int {
big.go#L29: return new(big.Int)
big.go#L32: return new(big.Int).SetBits(x)
crypto/rand
util.go#L17: func Prime(rand io.Reader, bits int) (*big.Int, error) {
util.go#L33: p := new(big.Int)
util.go#L67: func Int(rand io.Reader, max *big.Int) (n *big.Int, err error) {
util.go#L71: n = new(big.Int)
crypto/rsa
rsa.go#L69: N *big.Int // modulus
rsa.go#L109: D *big.Int // private exponent
rsa.go#L110: Primes []*big.Int // prime factors of N, has >= 2 elements.
rsa.go#L146: func bigIntEqual(a, b *big.Int) bool {
rsa.go#L202: Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
rsa.go#L203: Qinv *big.Int // Q^-1 mod P
rsa.go#L221: Exp *big.Int // D mod (prime-1).
rsa.go#L222: Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
rsa.go#L223: R *big.Int // product of primes prior to this (inc p and q).
rsa.go#L308: Primes: []*big.Int{P, Q},
rsa.go#L351: N: new(big.Int).SetBytes(N),
rsa.go#L354: D: new(big.Int).SetBytes(d),
rsa.go#L355: Primes: []*big.Int{
rsa.go#L356: new(big.Int).SetBytes(p),
rsa.go#L357: new(big.Int).SetBytes(q),
rsa.go#L361: Dp: new(big.Int).SetBytes(dP),
rsa.go#L362: Dq: new(big.Int).SetBytes(dQ),
rsa.go#L363: Qinv: new(big.Int).SetBytes(qInv),
rsa.go#L421: primes := make([]*big.Int, nprimes)
rsa.go#L458: n := new(big.Int).Set(bigOne)
rsa.go#L459: totient := new(big.Int).Set(bigOne)
rsa.go#L460: pminus1 := new(big.Int)
rsa.go#L473: priv.D = new(big.Int)
rsa.go#L562: precomputed.Dp = new(big.Int).SetBytes(dP)
rsa.go#L563: precomputed.Dq = new(big.Int).SetBytes(dQ)
rsa.go#L564: precomputed.Qinv = new(big.Int).SetBytes(qInv)
rsa.go#L592: precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
rsa.go#L595: precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
rsa.go#L598: precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
rsa.go#L603: r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
rsa.go#L609: values.Exp = new(big.Int).Sub(prime, bigOne)
rsa.go#L612: values.R = new(big.Int).Set(r)
rsa.go#L613: values.Coeff = new(big.Int).ModInverse(r, prime)
crypto/x509
oid.go#L92: func base128BigIntLength(n *big.Int) int {
oid.go#L99: func appendBase128BigInt(dst []byte, n *big.Int) []byte {
oid.go#L302: bigVal *big.Int
oid.go#L315: bigVal = new(big.Int)
parser.go#L262: p := &pkcs1PublicKey{N: new(big.Int)}
parser.go#L323: y := new(big.Int)
parser.go#L330: P: new(big.Int),
parser.go#L331: Q: new(big.Int),
parser.go#L332: G: new(big.Int),
parser.go#L933: serial := new(big.Int)
parser.go#L1218: rce.SerialNumber = new(big.Int)
parser.go#L1286: rl.Number = new(big.Int)
pkcs1.go#L18: N *big.Int
pkcs1.go#L20: D *big.Int
pkcs1.go#L21: P *big.Int
pkcs1.go#L22: Q *big.Int
pkcs1.go#L23: Dp *big.Int `asn1:"optional"`
pkcs1.go#L24: Dq *big.Int `asn1:"optional"`
pkcs1.go#L25: Qinv *big.Int `asn1:"optional"`
pkcs1.go#L31: Prime *big.Int
pkcs1.go#L34: Exp *big.Int
pkcs1.go#L35: Coeff *big.Int
pkcs1.go#L40: N *big.Int
pkcs1.go#L88: key.Primes = make([]*big.Int, 2+len(priv.AdditionalPrimes))
sec1.go#L109: k := new(big.Int).SetBytes(privKey.PrivateKey)
x509.go#L183: SerialNumber *big.Int
x509.go#L195: P, Q, G *big.Int
x509.go#L701: SerialNumber *big.Int
x509.go#L1682: serialNumber = new(big.Int).SetBytes(serialBytes)
x509.go#L2275: SerialNumber *big.Int
x509.go#L2345: Number *big.Int
crypto/x509/pkix
pkix.go#L317: SerialNumber *big.Int
encoding/asn1
asn1.go#L137: func parseBigInt(bytes []byte) (*big.Int, error) {
asn1.go#L141: ret := new(big.Int)
asn1.go#L697: bigIntType = reflect.TypeFor[*big.Int]()
asn1.go#L926: case **big.Int:
marshal.go#L195: func makeBigInt(n *big.Int) (encoder, error) {
marshal.go#L205: nMinus1 := new(big.Int).Neg(n)
marshal.go#L473: return makeBigInt(value.Interface().(*big.Int))
go/constant
value.go#L97: intVal struct{ val *big.Int } // Int values not representable as an int64
value.go#L275: func newInt() *big.Int { return new(big.Int) }
value.go#L287: func makeInt(x *big.Int) Value {
value.go#L355: func smallInt(x *big.Int) bool {
value.go#L631: case *big.Int:
golang.org/x/tools/internal/gcimporter
iexport.go#L1310: var i big.Int
iexport.go#L1369: return new(big.Rat).SetInt(new(big.Int).SetBytes(bytes))
iexport.go#L1392: func (w *exportWriter) mpint(x *big.Int, typ types.Type) {
iimport.go#L703: var x big.Int
iimport.go#L754: func (r *importReader) mpint(x *big.Int, typ *types.Basic) {
iimport.go#L794: var mant big.Int
golang.org/x/tools/internal/pkgbits
decoder.go#L460: func (r *Decoder) bigInt() *big.Int {
decoder.go#L461: v := new(big.Int).SetBytes([]byte(r.String()))
encoder.go#L367: case *big.Int:
encoder.go#L380: func (w *Encoder) bigInt(v *big.Int) {
vendor/golang.org/x/crypto/cryptobyte
asn1.go#L67: func (b *Builder) AddASN1BigInt(n *big.Int) {
asn1.go#L78: nMinus1 := new(big.Int).Neg(n)
asn1.go#L289: case *big.Int:
asn1.go#L315: func (s *String) readASN1BigInt(out *big.Int) bool {
asn1.go#L694: case *big.Int:
asn1.go#L695: if defaultValue, ok := defaultValue.(*big.Int); ok {
asn1.go#L696: out.(*big.Int).Set(defaultValue)