type math/big.Word
151 uses
math/big (current package)
arith.go#L16: type Word uint
arith.go#L44: func mulWW_g(x, y Word) (z1, z0 Word) {
arith.go#L46: return Word(hi), Word(lo)
arith.go#L50: func mulAddWWW_g(x, y, c Word) (z1, z0 Word) {
arith.go#L54: return Word(hi + cc), Word(lo)
arith.go#L59: func nlz(x Word) uint {
arith.go#L64: func addVV_g(z, x, y []Word) (c Word) {
arith.go#L68: z[i] = Word(zi)
arith.go#L69: c = Word(cc)
arith.go#L75: func subVV_g(z, x, y []Word) (c Word) {
arith.go#L79: z[i] = Word(zi)
arith.go#L80: c = Word(cc)
arith.go#L86: func addVW_g(z, x []Word, y Word) (c Word) {
arith.go#L91: z[i] = Word(zi)
arith.go#L92: c = Word(cc)
arith.go#L104: func addVWlarge(z, x []Word, y Word) (c Word) {
arith.go#L113: z[i] = Word(zi)
arith.go#L114: c = Word(cc)
arith.go#L119: func subVW_g(z, x []Word, y Word) (c Word) {
arith.go#L124: z[i] = Word(zi)
arith.go#L125: c = Word(cc)
arith.go#L131: func subVWlarge(z, x []Word, y Word) (c Word) {
arith.go#L140: z[i] = Word(zi)
arith.go#L141: c = Word(cc)
arith.go#L146: func shlVU_g(z, x []Word, s uint) (c Word) {
arith.go#L165: func shrVU_g(z, x []Word, s uint) (c Word) {
arith.go#L188: func mulAddVWW_g(z, x []Word, y, r Word) (c Word) {
arith.go#L197: func addMulVVW_g(z, x []Word, y Word) (c Word) {
arith.go#L202: c, z[i] = Word(cc), Word(lo)
arith.go#L211: func divWW(x1, x0, y, m Word) (q, r Word) {
arith.go#L267: return Word(qq), Word(r0 >> s)
arith.go#L271: func reciprocalWord(d1 Word) Word {
arith.go#L276: return Word(rec)
arith_decl.go#L11: func mulWW(x, y Word) (z1, z0 Word)
arith_decl.go#L12: func addVV(z, x, y []Word) (c Word)
arith_decl.go#L13: func subVV(z, x, y []Word) (c Word)
arith_decl.go#L14: func addVW(z, x []Word, y Word) (c Word)
arith_decl.go#L15: func subVW(z, x []Word, y Word) (c Word)
arith_decl.go#L16: func shlVU(z, x []Word, s uint) (c Word)
arith_decl.go#L17: func shrVU(z, x []Word, s uint) (c Word)
arith_decl.go#L18: func mulAddVWW(z, x []Word, y, r Word) (c Word)
arith_decl.go#L19: func addMulVVW(z, x []Word, y Word) (c Word)
decimal.go#L109: var n Word
decimal.go#L111: ch := Word(x.mant[r])
decimal.go#L128: mask := Word(1)<<s - 1
decimal.go#L130: ch := Word(x.mant[r])
float.go#L445: lsb := Word(1) << ntz
float.go#L1398: var xm, ym Word
int.go#L86: func (x *Int) Bits() []Word {
int.go#L95: func (z *Int) SetBits(abs []Word) *Int {
int.go#L572: func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {
int.go#L574: var a1, a2, u2, v2 Word
int.go#L623: func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) {
int.go#L732: var ua, ub, va, vb Word
nat.go#L35: type nat []Word
nat.go#L72: func (z nat) setWord(x Word) nat {
nat.go#L83: if w := Word(x); uint64(w) == x {
nat.go#L88: z[1] = Word(x >> 32)
nat.go#L89: z[0] = Word(x)
nat.go#L180: func (z nat) mulAddWW(x nat, y, r Word) nat {
nat.go#L213: func (z nat) montgomery(x, y, m nat, k Word, n int) nat {
nat.go#L223: var c Word
nat.go#L731: m := Word(1) << (i % _W)
nat.go#L873: mask := Word((1 << bitLengthOfMSW) - 1)
nat.go#L879: z[i] = Word(rand.Uint32())
nat.go#L883: z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
nat.go#L1183: func bigEndianWord(buf []byte) Word {
nat.go#L1185: return Word(binary.BigEndian.Uint64(buf))
nat.go#L1187: return Word(binary.BigEndian.Uint32(buf))
nat.go#L1201: var d Word
nat.go#L1203: d |= Word(buf[i-1]) << s
natconv.go#L31: func maxPow(b Word) (p Word, n int) {
natconv.go#L43: func pow(x Word, n int) (p Word) {
natconv.go#L166: b1 := Word(b)
natconv.go#L168: di := Word(0) // 0 <= di < b1**i < bn
natconv.go#L186: var d1 Word
natconv.go#L189: d1 = Word(ch - '0')
natconv.go#L191: d1 = Word(ch - 'a' + 10)
natconv.go#L194: d1 = Word(ch - 'A' + 10)
natconv.go#L196: d1 = Word(ch - 'A' + maxBaseSmall)
natconv.go#L283: if b := Word(base); b == b&-b {
natconv.go#L286: mask := Word(1<<shift - 1)
natconv.go#L370: func (q nat) convertWords(s []byte, b Word, ndigits int, bb Word, table []divisor) {
natconv.go#L402: var r Word
natconv.go#L455: func (z nat) expWW(x, y Word) nat {
natconv.go#L460: func divisors(m int, b Word, ndigits int, bb Word) []divisor {
natconv.go#L488: table[0].bbb = nat(nil).expWW(bb, Word(leafSize))
natdiv.go#L519: var r2 Word
natdiv.go#L532: func (z nat) divW(x nat, y Word) (q nat, r Word) {
natdiv.go#L552: func (x nat) modW(d Word) (r Word) {
natdiv.go#L561: func divWVW(z []Word, xn Word, x []Word, y Word) (r Word) {
natdiv.go#L565: z[0] = Word(qq)
natdiv.go#L566: return Word(rr)
natdiv.go#L636: qhat := Word(_M)
natdiv.go#L637: var ujn Word
natdiv.go#L646: var rhat Word
natdiv.go#L703: func greaterThan(x1, x2, y1, y2 Word) bool {
prime.go#L168: p := Word(3)
ratconv.go#L181: pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil) // use underlying array of z.b.abs
go/constant
value.go#L685: _m = ^big.Word(0)
value.go#L725: words := make([]big.Word, (len(bytes)+(wordSize-1))/wordSize)
value.go#L728: var w big.Word
value.go#L731: w |= big.Word(b) << s