Source File
infer.go
Belonging Package
go/types
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type parameter inference given
// a list of concrete arguments and a parameter list.
package types
import (
)
// infer attempts to infer the complete set of type arguments for generic function instantiation/call
// based on the given type parameters tparams, type arguments targs, function parameters params, and
// function arguments args, if any. There must be at least one type parameter, no more type arguments
// than type parameters, and params and args must match in number (incl. zero).
// If successful, infer returns the complete list of type arguments, one for each type parameter.
// Otherwise the result is nil and appropriate errors will be reported.
//
// Inference proceeds as follows:
//
// Starting with given type arguments
// 1) apply FTI (function type inference) with typed arguments,
// 2) apply CTI (constraint type inference),
// 3) apply FTI with untyped function arguments,
// 4) apply CTI.
//
// The process stops as soon as all type arguments are known or an error occurs.
func ( *Checker) ( positioner, []*TypeParam, []Type, *Tuple, []*operand) ( []Type) {
if debug {
defer func() {
assert( == nil || len() == len())
for , := range {
assert( != nil)
}
//check.dump("### inferred targs = %s", result)
}()
}
if traceInference {
.dump("-- inferA %s%s ➞ %s", , , )
defer func() {
.dump("=> inferA %s ➞ %s", , )
}()
}
// There must be at least one type parameter, and no more type arguments than type parameters.
:= len()
assert( > 0 && len() <= )
// Function parameters and arguments must match in number.
assert(.Len() == len())
// If we already have all type arguments, we're done.
if len() == {
return
}
// len(targs) < n
const = true
if {
// For the purpose of type inference we must differentiate type parameters
// occurring in explicit type or value function arguments from the type
// parameters we are solving for via unification, because they may be the
// same in self-recursive calls. For example:
//
// func f[P *Q, Q any](p P, q Q) {
// f(p)
// }
//
// In this example, the fact that the P used in the instantation f[P] has
// the same pointer identity as the P we are trying to solve for via
// unification is coincidental: there is nothing special about recursive
// calls that should cause them to conflate the identity of type arguments
// with type parameters. To put it another way: any such self-recursive
// call is equivalent to a mutually recursive call, which does not run into
// any problems of type parameter identity. For example, the following code
// is equivalent to the code above.
//
// func f[P interface{*Q}, Q any](p P, q Q) {
// f2(p)
// }
//
// func f2[P interface{*Q}, Q any](p P, q Q) {
// f(p)
// }
//
// We can turn the first example into the second example by renaming type
// parameters in the original signature to give them a new identity. As an
// optimization, we do this only for self-recursive calls.
// We can detect if we are in a self-recursive call by comparing the
// identity of the first type parameter in the current function with the
// first type parameter in tparams. This works because type parameters are
// unique to their type parameter list.
:= .sig != nil && .sig.tparams.Len() > 0 && [0] == .sig.tparams.At(0)
if {
// In self-recursive inference, rename the type parameters with new type
// parameters that are the same but for their pointer identity.
:= make([]*TypeParam, len())
for , := range {
:= NewTypeName(.Obj().Pos(), .Obj().Pkg(), .Obj().Name(), nil)
[] = NewTypeParam(, nil)
[].index = .index // == i
}
:= makeRenameMap(, )
for , := range {
[].bound = .subst(.Pos(), .bound, , nil)
}
=
= .subst(.Pos(), , , nil).(*Tuple)
}
}
// If we have more than 2 arguments, we may have arguments with named and unnamed types.
// If that is the case, permutate params and args such that the arguments with named
// types are first in the list. This doesn't affect type inference if all types are taken
// as is. But when we have inexact unification enabled (as is the case for function type
// inference), when a named type is unified with an unnamed type, unification proceeds
// with the underlying type of the named type because otherwise unification would fail
// right away. This leads to an asymmetry in type inference: in cases where arguments of
// named and unnamed types are passed to parameters with identical type, different types
// (named vs underlying) may be inferred depending on the order of the arguments.
// By ensuring that named types are seen first, order dependence is avoided and unification
// succeeds where it can.
//
// This code is disabled for now pending decision whether we want to address cases like
// these and make the spec on type inference more complicated (see issue #43056).
const = false
if := len(); >= 2 && {
// Determine indices of arguments with named and unnamed types.
var , []int
for , := range {
if hasName(.typ) {
= append(, )
} else {
= append(, )
}
}
// If we have named and unnamed types, move the arguments with
// named types first. Update the parameter list accordingly.
// Make copies so as not to clobber the incoming slices.
if len() != 0 && len() != 0 {
:= make([]*Var, )
:= make([]*operand, )
:= 0
for , := range {
[] = .At()
[] = []
++
}
for , := range {
[] = .At()
[] = []
++
}
= NewTuple(...)
=
}
}
// --- 1 ---
// Continue with the type arguments we have. Avoid matching generic
// parameters that already have type arguments against function arguments:
// It may fail because matching uses type identity while parameter passing
// uses assignment rules. Instantiate the parameter list with the type
// arguments we have, and continue with that parameter list.
// First, make sure we have a "full" list of type arguments, some of which
// may be nil (unknown). Make a copy so as to not clobber the incoming slice.
if len() < {
:= make([]Type, )
copy(, )
=
}
// len(targs) == n
// Substitute type arguments for their respective type parameters in params,
// if any. Note that nil targs entries are ignored by check.subst.
// TODO(gri) Can we avoid this (we're setting known type arguments below,
// but that doesn't impact the isParameterized check for now).
if .Len() > 0 {
:= makeSubstMap(, )
= .subst(token.NoPos, , , nil).(*Tuple)
}
// Unify parameter and argument types for generic parameters with typed arguments
// and collect the indices of generic parameters with untyped arguments.
// Terminology: generic parameter = function parameter with a type-parameterized type
:= newUnifier(false)
.x.init()
// Set the type arguments which we know already.
for , := range {
if != nil {
.x.set(, )
}
}
:= func( string, , Type, *operand) {
// provide a better error message if we can
, := .x.types()
if == 0 {
// The first type parameter couldn't be inferred.
// If none of them could be inferred, don't try
// to provide the inferred type in the error msg.
:= true
for , := range {
if != nil {
= false
break
}
}
if {
.errorf(, _CannotInferTypeArgs, "%s %s of %s does not match %s (cannot infer %s)", , , .expr, , typeParamsString())
return
}
}
:= makeSubstMap(, )
// TODO(rFindley): pass a positioner here, rather than arg.Pos().
:= .subst(.Pos(), , , nil)
// _CannotInferTypeArgs indicates a failure of inference, though the actual
// error may be better attributed to a user-provided type argument (hence
// _InvalidTypeArg). We can't differentiate these cases, so fall back on
// the more general _CannotInferTypeArgs.
if != {
.errorf(, _CannotInferTypeArgs, "%s %s of %s does not match inferred type %s for %s", , , .expr, , )
} else {
.errorf(, _CannotInferTypeArgs, "%s %s of %s does not match %s", , , .expr, )
}
}
// indices of the generic parameters with untyped arguments - save for later
var []int
for , := range {
:= .At()
// If we permit bidirectional unification, this conditional code needs to be
// executed even if par.typ is not parameterized since the argument may be a
// generic function (for which we want to infer its type arguments).
if isParameterized(, .typ) {
if .mode == invalid {
// An error was reported earlier. Ignore this targ
// and continue, we may still be able to infer all
// targs resulting in fewer follow-on errors.
continue
}
if := .typ; isTyped() {
// If we permit bidirectional unification, and targ is
// a generic function, we need to initialize u.y with
// the respective type parameters of targ.
if !.unify(.typ, ) {
("type", .typ, , )
return nil
}
} else if , := .typ.(*TypeParam); {
// Since default types are all basic (i.e., non-composite) types, an
// untyped argument will never match a composite parameter type; the
// only parameter type it can possibly match against is a *TypeParam.
// Thus, for untyped arguments we only need to look at parameter types
// that are single type parameters.
= append(, )
}
}
}
// If we've got all type arguments, we're done.
var int
, = .x.types()
if < 0 {
return
}
// --- 2 ---
// See how far we get with constraint type inference.
// Note that even if we don't have any type arguments, constraint type inference
// may produce results for constraints that explicitly specify a type.
, = .inferB(, , )
if == nil || < 0 {
return
}
// --- 3 ---
// Use any untyped arguments to infer additional type arguments.
// Some generic parameters with untyped arguments may have been given
// a type by now, we can ignore them.
for , := range {
:= .At().typ.(*TypeParam) // is type parameter by construction of indices
// Only consider untyped arguments for which the corresponding type
// parameter doesn't have an inferred type yet.
if [.index] == nil {
:= []
:= Default(.typ)
// The default type for an untyped nil is untyped nil. We must not
// infer an untyped nil type as type parameter type. Ignore untyped
// nil by making sure all default argument types are typed.
if isTyped() && !.unify(, ) {
("default type", , , )
return nil
}
}
}
// If we've got all type arguments, we're done.
, = .x.types()
if < 0 {
return
}
// --- 4 ---
// Again, follow up with constraint type inference.
, = .inferB(, , )
if == nil || < 0 {
return
}
// At least one type argument couldn't be inferred.
assert( >= 0 && [] == nil)
:= []
.errorf(, _CannotInferTypeArgs, "cannot infer %s (%v)", .obj.name, .obj.pos)
return nil
}
// typeParamsString produces a string containing all the type parameter names
// in list suitable for human consumption.
func ( []*TypeParam) string {
// common cases
:= len()
switch {
case 0:
return ""
case 1:
return [0].obj.name
case 2:
return [0].obj.name + " and " + [1].obj.name
}
// general case (n > 2)
var strings.Builder
for , := range [:-1] {
if > 0 {
.WriteString(", ")
}
.WriteString(.obj.name)
}
.WriteString(", and ")
.WriteString([-1].obj.name)
return .String()
}
// IsParameterized reports whether typ contains any of the type parameters of tparams.
func ( []*TypeParam, Type) bool {
:= tpWalker{
seen: make(map[Type]bool),
tparams: ,
}
return .isParameterized()
}
type tpWalker struct {
seen map[Type]bool
tparams []*TypeParam
}
func ( *tpWalker) ( Type) ( bool) {
// detect cycles
if , := .seen[]; {
return
}
.seen[] = false
defer func() {
.seen[] =
}()
switch t := .(type) {
case nil, *Basic: // TODO(gri) should nil be handled here?
break
case *Array:
return .(.elem)
case *Slice:
return .(.elem)
case *Struct:
for , := range .fields {
if .(.typ) {
return true
}
}
case *Pointer:
return .(.base)
case *Tuple:
:= .Len()
for := 0; < ; ++ {
if .(.At().typ) {
return true
}
}
case *Signature:
// t.tparams may not be nil if we are looking at a signature
// of a generic function type (or an interface method) that is
// part of the type we're testing. We don't care about these type
// parameters.
// Similarly, the receiver of a method may declare (rather then
// use) type parameters, we don't care about those either.
// Thus, we only need to look at the input and result parameters.
return .(.params) || .(.results)
case *Interface:
:= .typeSet()
for , := range .methods {
if .(.typ) {
return true
}
}
return .is(func( *term) bool {
return != nil && .(.typ)
})
case *Map:
return .(.key) || .(.elem)
case *Chan:
return .(.elem)
case *Named:
return .isParameterizedTypeList(.targs.list())
case *TypeParam:
// t must be one of w.tparams
return tparamIndex(.tparams, ) >= 0
default:
unreachable()
}
return false
}
func ( *tpWalker) ( []Type) bool {
for , := range {
if .isParameterized() {
return true
}
}
return false
}
// inferB returns the list of actual type arguments inferred from the type parameters'
// bounds and an initial set of type arguments. If type inference is impossible because
// unification fails, an error is reported if report is set to true, the resulting types
// list is nil, and index is 0.
// Otherwise, types is the list of inferred type arguments, and index is the index of the
// first type argument in that list that couldn't be inferred (and thus is nil). If all
// type arguments were inferred successfully, index is < 0. The number of type arguments
// provided may be less than the number of type parameters, but there must be at least one.
func ( *Checker) ( positioner, []*TypeParam, []Type) ( []Type, int) {
assert(len() >= len() && len() > 0)
if traceInference {
.dump("-- inferB %s ➞ %s", , )
defer func() {
.dump("=> inferB %s ➞ %s", , )
}()
}
// Setup bidirectional unification between constraints
// and the corresponding type arguments (which may be nil!).
:= newUnifier(false)
.x.init()
.y = .x // type parameters between LHS and RHS of unification are identical
// Set the type arguments which we know already.
for , := range {
if != nil {
.x.set(, )
}
}
// Repeatedly apply constraint type inference as long as
// there are still unknown type arguments and progress is
// being made.
//
// This is an O(n^2) algorithm where n is the number of
// type parameters: if there is progress (and iteration
// continues), at least one type argument is inferred
// per iteration and we have a doubly nested loop.
// In practice this is not a problem because the number
// of type parameters tends to be very small (< 5 or so).
// (It should be possible for unification to efficiently
// signal newly inferred type arguments; then the loops
// here could handle the respective type parameters only,
// but that will come at a cost of extra complexity which
// may not be worth it.)
for := .x.unknowns(); > 0; {
:=
for , := range {
// If there is a core term (i.e., a core type with tilde information)
// unify the type parameter with the core type.
if , := coreTerm(); != nil {
// A type parameter can be unified with its core type in two cases.
:= .x.at()
switch {
case != nil:
// The corresponding type argument tx is known.
// In this case, if the core type has a tilde, the type argument's underlying
// type must match the core type, otherwise the type argument and the core type
// must match.
// If tx is an external type parameter, don't consider its underlying type
// (which is an interface). Core type unification will attempt to unify against
// core.typ.
// Note also that even with inexact unification we cannot leave away the under
// call here because it's possible that both tx and core.typ are named types,
// with under(tx) being a (named) basic type matching core.typ. Such cases do
// not match with inexact unification.
if .tilde && !isTypeParam() {
= under()
}
if !.unify(, .typ) {
// TODO(gri) improve error message by providing the type arguments
// which we know already
// Don't use term.String() as it always qualifies types, even if they
// are in the current package.
:= ""
if .tilde {
= "~"
}
.errorf(, _InvalidTypeArg, "%s does not match %s%s", , , .typ)
return nil, 0
}
case && !.tilde:
// The corresponding type argument tx is unknown and there's a single
// specific type and no tilde.
// In this case the type argument must be that single type; set it.
.x.set(, .typ)
default:
// Unification is not possible and no progress was made.
continue
}
// The number of known type arguments may have changed.
= .x.unknowns()
if == 0 {
break // all type arguments are known
}
}
}
assert( <= )
if == {
break // no progress
}
=
}
// u.x.types() now contains the incoming type arguments plus any additional type
// arguments which were inferred from core terms. The newly inferred non-nil
// entries may still contain references to other type parameters.
// For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int
// was given, unification produced the type list [int, []C, *A]. We eliminate the
// remaining type parameters by substituting the type parameters in this type list
// until nothing changes anymore.
, _ = .x.types()
if debug {
for , := range {
assert( == nil || [] == )
}
}
// The data structure of each (provided or inferred) type represents a graph, where
// each node corresponds to a type and each (directed) vertice points to a component
// type. The substitution process described above repeatedly replaces type parameter
// nodes in these graphs with the graphs of the types the type parameters stand for,
// which creates a new (possibly bigger) graph for each type.
// The substitution process will not stop if the replacement graph for a type parameter
// also contains that type parameter.
// For instance, for [A interface{ *A }], without any type argument provided for A,
// unification produces the type list [*A]. Substituting A in *A with the value for
// A will lead to infinite expansion by producing [**A], [****A], [********A], etc.,
// because the graph A -> *A has a cycle through A.
// Generally, cycles may occur across multiple type parameters and inferred types
// (for instance, consider [P interface{ *Q }, Q interface{ func(P) }]).
// We eliminate cycles by walking the graphs for all type parameters. If a cycle
// through a type parameter is detected, cycleFinder nils out the respectice type
// which kills the cycle; this also means that the respective type could not be
// inferred.
//
// TODO(gri) If useful, we could report the respective cycle as an error. We don't
// do this now because type inference will fail anyway, and furthermore,
// constraints with cycles of this kind cannot currently be satisfied by
// any user-suplied type. But should that change, reporting an error
// would be wrong.
:= cycleFinder{, , make(map[Type]bool)}
for , := range {
.typ() // t != nil
}
// dirty tracks the indices of all types that may still contain type parameters.
// We know that nil type entries and entries corresponding to provided (non-nil)
// type arguments are clean, so exclude them from the start.
var []int
for , := range {
if != nil && ( >= len() || [] == nil) {
= append(, )
}
}
for len() > 0 {
// TODO(gri) Instead of creating a new substMap for each iteration,
// provide an update operation for substMaps and only change when
// needed. Optimization.
:= makeSubstMap(, )
:= 0
for , := range {
:= []
if := .subst(token.NoPos, , , nil); != {
[] =
[] =
++
}
}
= [:]
}
// Once nothing changes anymore, we may still have type parameters left;
// e.g., a constraint with core type *P may match a type parameter Q but
// we don't have any type arguments to fill in for *P or Q (issue #45548).
// Don't let such inferences escape, instead nil them out.
for , := range {
if != nil && isParameterized(, ) {
[] = nil
}
}
// update index
= -1
for , := range {
if == nil {
=
break
}
}
return
}
// If the type parameter has a single specific type S, coreTerm returns (S, true).
// Otherwise, if tpar has a core type T, it returns a term corresponding to that
// core type and false. In that case, if any term of tpar has a tilde, the core
// term has a tilde. In all other cases coreTerm returns (nil, false).
func ( *TypeParam) (*term, bool) {
:= 0
var *term // valid if n == 1
var bool
.is(func( *term) bool {
if == nil {
assert( == 0)
return false // no terms
}
++
=
if .tilde {
= true
}
return true
})
if == 1 {
if debug {
assert(debug && under(.typ) == coreType())
}
return , true
}
if := coreType(); != nil {
// A core type is always an underlying type.
// If any term of tpar has a tilde, we don't
// have a precise core type and we must return
// a tilde as well.
return &term{, }, false
}
return nil, false
}
type cycleFinder struct {
tparams []*TypeParam
types []Type
seen map[Type]bool
}
func ( *cycleFinder) ( Type) {
if .seen[] {
// We have seen typ before. If it is one of the type parameters
// in tparams, iterative substitution will lead to infinite expansion.
// Nil out the corresponding type which effectively kills the cycle.
if , := .(*TypeParam); != nil {
if := tparamIndex(.tparams, ); >= 0 {
// cycle through tpar
.types[] = nil
}
}
// If we don't have one of our type parameters, the cycle is due
// to an ordinary recursive type and we can just stop walking it.
return
}
.seen[] = true
defer delete(.seen, )
switch t := .(type) {
case *Basic:
// nothing to do
case *Array:
.(.elem)
case *Slice:
.(.elem)
case *Struct:
.varList(.fields)
case *Pointer:
.(.base)
// case *Tuple:
// This case should not occur because tuples only appear
// in signatures where they are handled explicitly.
case *Signature:
if .params != nil {
.varList(.params.vars)
}
if .results != nil {
.varList(.results.vars)
}
case *Union:
for , := range .terms {
.(.typ)
}
case *Interface:
for , := range .methods {
.(.typ)
}
for , := range .embeddeds {
.()
}
case *Map:
.(.key)
.(.elem)
case *Chan:
.(.elem)
case *Named:
for , := range .TypeArgs().list() {
.()
}
case *TypeParam:
if := tparamIndex(.tparams, ); >= 0 && .types[] != nil {
.(.types[])
}
default:
panic(fmt.Sprintf("unexpected %T", ))
}
}
func ( *cycleFinder) ( []*Var) {
for , := range {
.typ(.typ)
}
}
The pages are generated with Golds v0.4.9. (GOOS=linux GOARCH=amd64)