Source File
pprof.go
Belonging Package
runtime/pprof
// Copyright 2010 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// Package pprof writes runtime profiling data in the format expected// by the pprof visualization tool.//// # Profiling a Go program//// The first step to profiling a Go program is to enable profiling.// Support for profiling benchmarks built with the standard testing// package is built into go test. For example, the following command// runs benchmarks in the current directory and writes the CPU and// memory profiles to cpu.prof and mem.prof://// go test -cpuprofile cpu.prof -memprofile mem.prof -bench .//// To add equivalent profiling support to a standalone program, add// code like the following to your main function://// var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`")// var memprofile = flag.String("memprofile", "", "write memory profile to `file`")//// func main() {// flag.Parse()// if *cpuprofile != "" {// f, err := os.Create(*cpuprofile)// if err != nil {// log.Fatal("could not create CPU profile: ", err)// }// defer f.Close() // error handling omitted for example// if err := pprof.StartCPUProfile(f); err != nil {// log.Fatal("could not start CPU profile: ", err)// }// defer pprof.StopCPUProfile()// }//// // ... rest of the program ...//// if *memprofile != "" {// f, err := os.Create(*memprofile)// if err != nil {// log.Fatal("could not create memory profile: ", err)// }// defer f.Close() // error handling omitted for example// runtime.GC() // get up-to-date statistics// // Lookup("allocs") creates a profile similar to go test -memprofile.// // Alternatively, use Lookup("heap") for a profile// // that has inuse_space as the default index.// if err := pprof.Lookup("allocs").WriteTo(f, 0); err != nil {// log.Fatal("could not write memory profile: ", err)// }// }// }//// There is also a standard HTTP interface to profiling data. Adding// the following line will install handlers under the /debug/pprof/// URL to download live profiles://// import _ "net/http/pprof"//// See the net/http/pprof package for more details.//// Profiles can then be visualized with the pprof tool://// go tool pprof cpu.prof//// There are many commands available from the pprof command line.// Commonly used commands include "top", which prints a summary of the// top program hot-spots, and "web", which opens an interactive graph// of hot-spots and their call graphs. Use "help" for information on// all pprof commands.//// For more information about pprof, see// https://github.com/google/pprof/blob/main/doc/README.md.package pprofimport ()// BUG(rsc): Profiles are only as good as the kernel support used to generate them.// See https://golang.org/issue/13841 for details about known problems.// A Profile is a collection of stack traces showing the call sequences// that led to instances of a particular event, such as allocation.// Packages can create and maintain their own profiles; the most common// use is for tracking resources that must be explicitly closed, such as files// or network connections.//// A Profile's methods can be called from multiple goroutines simultaneously.//// Each Profile has a unique name. A few profiles are predefined://// goroutine - stack traces of all current goroutines// heap - a sampling of memory allocations of live objects// allocs - a sampling of all past memory allocations// threadcreate - stack traces that led to the creation of new OS threads// block - stack traces that led to blocking on synchronization primitives// mutex - stack traces of holders of contended mutexes//// These predefined profiles maintain themselves and panic on an explicit// [Profile.Add] or [Profile.Remove] method call.//// The CPU profile is not available as a Profile. It has a special API,// the [StartCPUProfile] and [StopCPUProfile] functions, because it streams// output to a writer during profiling.//// # Heap profile//// The heap profile reports statistics as of the most recently completed// garbage collection; it elides more recent allocation to avoid skewing// the profile away from live data and toward garbage.// If there has been no garbage collection at all, the heap profile reports// all known allocations. This exception helps mainly in programs running// without garbage collection enabled, usually for debugging purposes.//// The heap profile tracks both the allocation sites for all live objects in// the application memory and for all objects allocated since the program start.// Pprof's -inuse_space, -inuse_objects, -alloc_space, and -alloc_objects// flags select which to display, defaulting to -inuse_space (live objects,// scaled by size).//// # Allocs profile//// The allocs profile is the same as the heap profile but changes the default// pprof display to -alloc_space, the total number of bytes allocated since// the program began (including garbage-collected bytes).//// # Block profile//// The block profile tracks time spent blocked on synchronization primitives,// such as [sync.Mutex], [sync.RWMutex], [sync.WaitGroup], [sync.Cond], and// channel send/receive/select.//// Stack traces correspond to the location that blocked (for example,// [sync.Mutex.Lock]).//// Sample values correspond to cumulative time spent blocked at that stack// trace, subject to time-based sampling specified by// [runtime.SetBlockProfileRate].//// # Mutex profile//// The mutex profile tracks contention on mutexes, such as [sync.Mutex],// [sync.RWMutex], and runtime-internal locks.//// Stack traces correspond to the end of the critical section causing// contention. For example, a lock held for a long time while other goroutines// are waiting to acquire the lock will report contention when the lock is// finally unlocked (that is, at [sync.Mutex.Unlock]).//// Sample values correspond to the approximate cumulative time other goroutines// spent blocked waiting for the lock, subject to event-based sampling// specified by [runtime.SetMutexProfileFraction]. For example, if a caller// holds a lock for 1s while 5 other goroutines are waiting for the entire// second to acquire the lock, its unlock call stack will report 5s of// contention.//// Runtime-internal locks are always reported at the location// "runtime._LostContendedRuntimeLock". More detailed stack traces for// runtime-internal locks can be obtained by setting// `GODEBUG=runtimecontentionstacks=1` (see package [runtime] docs for// caveats).type Profile struct {name stringmu sync.Mutexm map[any][]uintptrcount func() intwrite func(io.Writer, int) error}// profiles records all registered profiles.var profiles struct {mu sync.Mutexm map[string]*Profile}var goroutineProfile = &Profile{name: "goroutine",count: countGoroutine,write: writeGoroutine,}var threadcreateProfile = &Profile{name: "threadcreate",count: countThreadCreate,write: writeThreadCreate,}var heapProfile = &Profile{name: "heap",count: countHeap,write: writeHeap,}var allocsProfile = &Profile{name: "allocs",count: countHeap, // identical to heap profilewrite: writeAlloc,}var blockProfile = &Profile{name: "block",count: countBlock,write: writeBlock,}var mutexProfile = &Profile{name: "mutex",count: countMutex,write: writeMutex,}func () {profiles.mu.Lock()if profiles.m == nil {// Initial built-in profiles.profiles.m = map[string]*Profile{"goroutine": goroutineProfile,"threadcreate": threadcreateProfile,"heap": heapProfile,"allocs": allocsProfile,"block": blockProfile,"mutex": mutexProfile,}}}func () {profiles.mu.Unlock()}// NewProfile creates a new profile with the given name.// If a profile with that name already exists, NewProfile panics.// The convention is to use a 'import/path.' prefix to create// separate name spaces for each package.// For compatibility with various tools that read pprof data,// profile names should not contain spaces.func ( string) *Profile {lockProfiles()defer unlockProfiles()if == "" {panic("pprof: NewProfile with empty name")}if profiles.m[] != nil {panic("pprof: NewProfile name already in use: " + )}:= &Profile{name: ,m: map[any][]uintptr{},}profiles.m[] =return}// Lookup returns the profile with the given name, or nil if no such profile exists.func ( string) *Profile {lockProfiles()defer unlockProfiles()return profiles.m[]}// Profiles returns a slice of all the known profiles, sorted by name.func () []*Profile {lockProfiles()defer unlockProfiles():= make([]*Profile, 0, len(profiles.m))for , := range profiles.m {= append(, )}slices.SortFunc(, func(, *Profile) int {return strings.Compare(.name, .name)})return}// Name returns this profile's name, which can be passed to [Lookup] to reobtain the profile.func ( *Profile) () string {return .name}// Count returns the number of execution stacks currently in the profile.func ( *Profile) () int {.mu.Lock()defer .mu.Unlock()if .count != nil {return .count()}return len(.m)}// Add adds the current execution stack to the profile, associated with value.// Add stores value in an internal map, so value must be suitable for use as// a map key and will not be garbage collected until the corresponding// call to [Profile.Remove]. Add panics if the profile already contains a stack for value.//// The skip parameter has the same meaning as [runtime.Caller]'s skip// and controls where the stack trace begins. Passing skip=0 begins the// trace in the function calling Add. For example, given this// execution stack://// Add// called from rpc.NewClient// called from mypkg.Run// called from main.main//// Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient.// Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run.func ( *Profile) ( any, int) {if .name == "" {panic("pprof: use of uninitialized Profile")}if .write != nil {panic("pprof: Add called on built-in Profile " + .name)}:= make([]uintptr, 32):= runtime.Callers(+1, [:])= [:]if len() == 0 {// The value for skip is too large, and there's no stack trace to record.= []uintptr{abi.FuncPCABIInternal(lostProfileEvent)}}.mu.Lock()defer .mu.Unlock()if .m[] != nil {panic("pprof: Profile.Add of duplicate value")}.m[] =}// Remove removes the execution stack associated with value from the profile.// It is a no-op if the value is not in the profile.func ( *Profile) ( any) {.mu.Lock()defer .mu.Unlock()delete(.m, )}// WriteTo writes a pprof-formatted snapshot of the profile to w.// If a write to w returns an error, WriteTo returns that error.// Otherwise, WriteTo returns nil.//// The debug parameter enables additional output.// Passing debug=0 writes the gzip-compressed protocol buffer described// in https://github.com/google/pprof/tree/main/proto#overview.// Passing debug=1 writes the legacy text format with comments// translating addresses to function names and line numbers, so that a// programmer can read the profile without tools.//// The predefined profiles may assign meaning to other debug values;// for example, when printing the "goroutine" profile, debug=2 means to// print the goroutine stacks in the same form that a Go program uses// when dying due to an unrecovered panic.func ( *Profile) ( io.Writer, int) error {if .name == "" {panic("pprof: use of zero Profile")}if .write != nil {return .write(, )}// Obtain consistent snapshot under lock; then process without lock..mu.Lock():= make([][]uintptr, 0, len(.m))for , := range .m {= append(, )}.mu.Unlock()// Map order is non-deterministic; make output deterministic.slices.SortFunc(, slices.Compare)return printCountProfile(, , .name, stackProfile())}type stackProfile [][]uintptrfunc ( stackProfile) () int { return len() }func ( stackProfile) ( int) []uintptr { return [] }func ( stackProfile) ( int) *labelMap { return nil }// A countProfile is a set of stack traces to be printed as counts// grouped by stack trace. There are multiple implementations:// all that matters is that we can find out how many traces there are// and obtain each trace in turn.type countProfile interface {Len() intStack(i int) []uintptrLabel(i int) *labelMap}// expandInlinedFrames copies the call stack from pcs into dst, expanding any// PCs corresponding to inlined calls into the corresponding PCs for the inlined// functions. Returns the number of frames copied to dst.func (, []uintptr) int {:= runtime.CallersFrames()var intfor < len() {, := .Next()// f.PC is a "call PC", but later consumers will expect// "return PCs"[] = .PC + 1++if ! {break}}return}// printCountCycleProfile outputs block profile records (for block or mutex profiles)// as the pprof-proto format output. Translations from cycle count to time duration// are done because The proto expects count and time (nanoseconds) instead of count// and the number of cycles for block, contention profiles.func ( io.Writer, , string, []profilerecord.BlockProfileRecord) error {// Output profile in protobuf form.:= newProfileBuilder().pbValueType(tagProfile_PeriodType, , "count").pb.int64Opt(tagProfile_Period, 1).pbValueType(tagProfile_SampleType, , "count").pbValueType(tagProfile_SampleType, , "nanoseconds"):= float64(pprof_cyclesPerSecond()) / 1e9:= []int64{0, 0}var []uint64:= pprof_makeProfStack()for , := range {[0] = .Count[1] = int64(float64(.Cycles) / )// For count profiles, all stack addresses are// return PCs, which is what appendLocsForStack expects.:= expandInlinedFrames(, .Stack)= .appendLocsForStack([:0], [:]).pbSample(, , nil)}.build()return nil}// printCountProfile prints a countProfile at the specified debug level.// The profile will be in compressed proto format unless debug is nonzero.func ( io.Writer, int, string, countProfile) error {// Build count of each stack.var strings.Builder:= func( []uintptr, *labelMap) string {.Reset()fmt.Fprintf(&, "@")for , := range {fmt.Fprintf(&, " %#x", )}if != nil {.WriteString("\n# labels: ").WriteString(.String())}return .String()}:= map[string]int{}:= map[string]int{}var []string:= .Len()for := 0; < ; ++ {:= (.Stack(), .Label())if [] == 0 {[] == append(, )}[]++}sort.Sort(&keysByCount{, })if > 0 {// Print debug profile in legacy format:= tabwriter.NewWriter(, 1, 8, 1, '\t', 0)fmt.Fprintf(, "%s profile: total %d\n", , .Len())for , := range {fmt.Fprintf(, "%d %s\n", [], )printStackRecord(, .Stack([]), false)}return .Flush()}// Output profile in protobuf form.:= newProfileBuilder().pbValueType(tagProfile_PeriodType, , "count").pb.int64Opt(tagProfile_Period, 1).pbValueType(tagProfile_SampleType, , "count"):= []int64{0}var []uint64for , := range {[0] = int64([])// For count profiles, all stack addresses are// return PCs, which is what appendLocsForStack expects.= .appendLocsForStack([:0], .Stack([])):= []var func()if .Label() != nil {= func() {for , := range .Label().list {.pbLabel(tagSample_Label, .key, .value, 0)}}}.pbSample(, , )}.build()return nil}// keysByCount sorts keys with higher counts first, breaking ties by key string order.type keysByCount struct {keys []stringcount map[string]int}func ( *keysByCount) () int { return len(.keys) }func ( *keysByCount) (, int) { .keys[], .keys[] = .keys[], .keys[] }func ( *keysByCount) (, int) bool {, := .keys[], .keys[], := .count[], .count[]if != {return >}return <}// printStackRecord prints the function + source line information// for a single stack trace.func ( io.Writer, []uintptr, bool) {:=:= runtime.CallersFrames()for {, := .Next():= .Functionif == "" {= truefmt.Fprintf(, "#\t%#x\n", .PC)} else if != "runtime.goexit" && ( || !(strings.HasPrefix(, "runtime.") || strings.HasPrefix(, "internal/runtime/"))) {// Hide runtime.goexit and any runtime functions at the beginning.// This is useful mainly for allocation traces.= truefmt.Fprintf(, "#\t%#x\t%s+%#x\t%s:%d\n", .PC, , .PC-.Entry, .File, .Line)}if ! {break}}if ! {// We didn't print anything; do it again,// and this time include runtime functions.(, , true)return}fmt.Fprintf(, "\n")}// Interface to system profiles.// WriteHeapProfile is shorthand for [Lookup]("heap").WriteTo(w, 0).// It is preserved for backwards compatibility.func ( io.Writer) error {return writeHeap(, 0)}// countHeap returns the number of records in the heap profile.func () int {, := runtime.MemProfile(nil, true)return}// writeHeap writes the current runtime heap profile to w.func ( io.Writer, int) error {return writeHeapInternal(, , "")}// writeAlloc writes the current runtime heap profile to w// with the total allocation space as the default sample type.func ( io.Writer, int) error {return writeHeapInternal(, , "alloc_space")}func ( io.Writer, int, string) error {var *runtime.MemStatsif != 0 {// Read mem stats first, so that our other allocations// do not appear in the statistics.= new(runtime.MemStats)runtime.ReadMemStats()}// Find out how many records there are (the call// pprof_memProfileInternal(nil, true) below),// allocate that many records, and get the data.// There's a race—more records might be added between// the two calls—so allocate a few extra records for safety// and also try again if we're very unlucky.// The loop should only execute one iteration in the common case.var []profilerecord.MemProfileRecord, := pprof_memProfileInternal(nil, true)for {// Allocate room for a slightly bigger profile,// in case a few more entries have been added// since the call to MemProfile.= make([]profilerecord.MemProfileRecord, +50), = pprof_memProfileInternal(, true)if {= [0:]break}// Profile grew; try again.}if == 0 {return writeHeapProto(, , int64(runtime.MemProfileRate), )}slices.SortFunc(, func(, profilerecord.MemProfileRecord) int {return cmp.Compare(.InUseBytes(), .InUseBytes())}):= bufio.NewWriter():= tabwriter.NewWriter(, 1, 8, 1, '\t', 0)=var runtime.MemProfileRecordfor := range {:= &[].AllocBytes += .AllocBytes.AllocObjects += .AllocObjects.FreeBytes += .FreeBytes.FreeObjects += .FreeObjects}// Technically the rate is MemProfileRate not 2*MemProfileRate,// but early versions of the C++ heap profiler reported 2*MemProfileRate,// so that's what pprof has come to expect.:= 2 * runtime.MemProfileRate// pprof reads a profile with alloc == inuse as being a "2-column" profile// (objects and bytes, not distinguishing alloc from inuse),// but then such a profile can't be merged using pprof *.prof with// other 4-column profiles where alloc != inuse.// The easiest way to avoid this bug is to adjust allocBytes so it's never == inuseBytes.// pprof doesn't use these header values anymore except for checking equality.:= .InUseBytes():= .AllocBytesif == {++}fmt.Fprintf(, "heap profile: %d: %d [%d: %d] @ heap/%d\n",.InUseObjects(), ,.AllocObjects, ,)for := range {:= &[]fmt.Fprintf(, "%d: %d [%d: %d] @",.InUseObjects(), .InUseBytes(),.AllocObjects, .AllocBytes)for , := range .Stack {fmt.Fprintf(, " %#x", )}fmt.Fprintf(, "\n")printStackRecord(, .Stack, false)}// Print memstats information too.// Pprof will ignore, but useful for people:=fmt.Fprintf(, "\n# runtime.MemStats\n")fmt.Fprintf(, "# Alloc = %d\n", .Alloc)fmt.Fprintf(, "# TotalAlloc = %d\n", .TotalAlloc)fmt.Fprintf(, "# Sys = %d\n", .Sys)fmt.Fprintf(, "# Lookups = %d\n", .Lookups)fmt.Fprintf(, "# Mallocs = %d\n", .Mallocs)fmt.Fprintf(, "# Frees = %d\n", .Frees)fmt.Fprintf(, "# HeapAlloc = %d\n", .HeapAlloc)fmt.Fprintf(, "# HeapSys = %d\n", .HeapSys)fmt.Fprintf(, "# HeapIdle = %d\n", .HeapIdle)fmt.Fprintf(, "# HeapInuse = %d\n", .HeapInuse)fmt.Fprintf(, "# HeapReleased = %d\n", .HeapReleased)fmt.Fprintf(, "# HeapObjects = %d\n", .HeapObjects)fmt.Fprintf(, "# Stack = %d / %d\n", .StackInuse, .StackSys)fmt.Fprintf(, "# MSpan = %d / %d\n", .MSpanInuse, .MSpanSys)fmt.Fprintf(, "# MCache = %d / %d\n", .MCacheInuse, .MCacheSys)fmt.Fprintf(, "# BuckHashSys = %d\n", .BuckHashSys)fmt.Fprintf(, "# GCSys = %d\n", .GCSys)fmt.Fprintf(, "# OtherSys = %d\n", .OtherSys)fmt.Fprintf(, "# NextGC = %d\n", .NextGC)fmt.Fprintf(, "# LastGC = %d\n", .LastGC)fmt.Fprintf(, "# PauseNs = %d\n", .PauseNs)fmt.Fprintf(, "# PauseEnd = %d\n", .PauseEnd)fmt.Fprintf(, "# NumGC = %d\n", .NumGC)fmt.Fprintf(, "# NumForcedGC = %d\n", .NumForcedGC)fmt.Fprintf(, "# GCCPUFraction = %v\n", .GCCPUFraction)fmt.Fprintf(, "# DebugGC = %v\n", .DebugGC)// Also flush out MaxRSS on supported platforms.addMaxRSS().Flush()return .Flush()}// countThreadCreate returns the size of the current ThreadCreateProfile.func () int {, := runtime.ThreadCreateProfile(nil)return}// writeThreadCreate writes the current runtime ThreadCreateProfile to w.func ( io.Writer, int) error {// Until https://golang.org/issues/6104 is addressed, wrap// ThreadCreateProfile because there's no point in tracking labels when we// don't get any stack-traces.return writeRuntimeProfile(, , "threadcreate", func( []profilerecord.StackRecord, []unsafe.Pointer) ( int, bool) {return pprof_threadCreateInternal()})}// countGoroutine returns the number of goroutines.func () int {return runtime.NumGoroutine()}// writeGoroutine writes the current runtime GoroutineProfile to w.func ( io.Writer, int) error {if >= 2 {return writeGoroutineStacks()}return writeRuntimeProfile(, , "goroutine", pprof_goroutineProfileWithLabels)}func ( io.Writer) error {// We don't know how big the buffer needs to be to collect// all the goroutines. Start with 1 MB and try a few times, doubling each time.// Give up and use a truncated trace if 64 MB is not enough.:= make([]byte, 1<<20)for := 0; ; ++ {:= runtime.Stack(, true)if < len() {= [:]break}if len() >= 64<<20 {// Filled 64 MB - stop there.break}= make([]byte, 2*len())}, := .Write()return}func ( io.Writer, int, string, func([]profilerecord.StackRecord, []unsafe.Pointer) (int, bool)) error {// Find out how many records there are (fetch(nil)),// allocate that many records, and get the data.// There's a race—more records might be added between// the two calls—so allocate a few extra records for safety// and also try again if we're very unlucky.// The loop should only execute one iteration in the common case.var []profilerecord.StackRecordvar []unsafe.Pointer, := (nil, nil)for {// Allocate room for a slightly bigger profile,// in case a few more entries have been added// since the call to ThreadProfile.= make([]profilerecord.StackRecord, +10)= make([]unsafe.Pointer, +10), = (, )if {= [0:]break}// Profile grew; try again.}return printCountProfile(, , , &runtimeProfile{, })}type runtimeProfile struct {stk []profilerecord.StackRecordlabels []unsafe.Pointer}func ( *runtimeProfile) () int { return len(.stk) }func ( *runtimeProfile) ( int) []uintptr { return .stk[].Stack }func ( *runtimeProfile) ( int) *labelMap { return (*labelMap)(.labels[]) }var cpu struct {sync.Mutexprofiling booldone chan bool}// StartCPUProfile enables CPU profiling for the current process.// While profiling, the profile will be buffered and written to w.// StartCPUProfile returns an error if profiling is already enabled.//// On Unix-like systems, StartCPUProfile does not work by default for// Go code built with -buildmode=c-archive or -buildmode=c-shared.// StartCPUProfile relies on the SIGPROF signal, but that signal will// be delivered to the main program's SIGPROF signal handler (if any)// not to the one used by Go. To make it work, call [os/signal.Notify]// for [syscall.SIGPROF], but note that doing so may break any profiling// being done by the main program.func ( io.Writer) error {// The runtime routines allow a variable profiling rate,// but in practice operating systems cannot trigger signals// at more than about 500 Hz, and our processing of the// signal is not cheap (mostly getting the stack trace).// 100 Hz is a reasonable choice: it is frequent enough to// produce useful data, rare enough not to bog down the// system, and a nice round number to make it easy to// convert sample counts to seconds. Instead of requiring// each client to specify the frequency, we hard code it.const = 100cpu.Lock()defer cpu.Unlock()if cpu.done == nil {cpu.done = make(chan bool)}// Double-check.if cpu.profiling {return fmt.Errorf("cpu profiling already in use")}cpu.profiling = trueruntime.SetCPUProfileRate()go profileWriter()return nil}// readProfile, provided by the runtime, returns the next chunk of// binary CPU profiling stack trace data, blocking until data is available.// If profiling is turned off and all the profile data accumulated while it was// on has been returned, readProfile returns eof=true.// The caller must save the returned data and tags before calling readProfile again.func () ( []uint64, []unsafe.Pointer, bool)func ( io.Writer) {:= newProfileBuilder()var errorfor {time.Sleep(100 * time.Millisecond), , := readProfile()if := .addCPUData(, ); != nil && == nil {=}if {break}}if != nil {// The runtime should never produce an invalid or truncated profile.// It drops records that can't fit into its log buffers.panic("runtime/pprof: converting profile: " + .Error())}.build()cpu.done <- true}// StopCPUProfile stops the current CPU profile, if any.// StopCPUProfile only returns after all the writes for the// profile have completed.func () {cpu.Lock()defer cpu.Unlock()if !cpu.profiling {return}cpu.profiling = falseruntime.SetCPUProfileRate(0)<-cpu.done}// countBlock returns the number of records in the blocking profile.func () int {, := runtime.BlockProfile(nil)return}// countMutex returns the number of records in the mutex profile.func () int {, := runtime.MutexProfile(nil)return}// writeBlock writes the current blocking profile to w.func ( io.Writer, int) error {return writeProfileInternal(, , "contention", pprof_blockProfileInternal)}// writeMutex writes the current mutex profile to w.func ( io.Writer, int) error {return writeProfileInternal(, , "mutex", pprof_mutexProfileInternal)}// writeProfileInternal writes the current blocking or mutex profile depending on the passed parameters.func ( io.Writer, int, string, func([]profilerecord.BlockProfileRecord) (int, bool)) error {var []profilerecord.BlockProfileRecord, := (nil)for {= make([]profilerecord.BlockProfileRecord, +50), = ()if {= [:]break}}slices.SortFunc(, func(, profilerecord.BlockProfileRecord) int {return cmp.Compare(.Cycles, .Cycles)})if <= 0 {return printCountCycleProfile(, "contentions", "delay", )}:= bufio.NewWriter():= tabwriter.NewWriter(, 1, 8, 1, '\t', 0)=fmt.Fprintf(, "--- %v:\n", )fmt.Fprintf(, "cycles/second=%v\n", pprof_cyclesPerSecond())if == "mutex" {fmt.Fprintf(, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1))}:= pprof_makeProfStack()for := range {:= &[]fmt.Fprintf(, "%v %v @", .Cycles, .Count):= expandInlinedFrames(, .Stack):= [:]for , := range {fmt.Fprintf(, " %#x", )}fmt.Fprint(, "\n")if > 0 {printStackRecord(, , true)}}if != nil {.Flush()}return .Flush()}//go:linkname pprof_goroutineProfileWithLabels runtime.pprof_goroutineProfileWithLabelsfunc ( []profilerecord.StackRecord, []unsafe.Pointer) ( int, bool)//go:linkname pprof_cyclesPerSecond runtime/pprof.runtime_cyclesPerSecondfunc () int64//go:linkname pprof_memProfileInternal runtime.pprof_memProfileInternalfunc ( []profilerecord.MemProfileRecord, bool) ( int, bool)//go:linkname pprof_blockProfileInternal runtime.pprof_blockProfileInternalfunc ( []profilerecord.BlockProfileRecord) ( int, bool)//go:linkname pprof_mutexProfileInternal runtime.pprof_mutexProfileInternalfunc ( []profilerecord.BlockProfileRecord) ( int, bool)//go:linkname pprof_threadCreateInternal runtime.pprof_threadCreateInternalfunc ( []profilerecord.StackRecord) ( int, bool)//go:linkname pprof_fpunwindExpand runtime.pprof_fpunwindExpandfunc (, []uintptr) int//go:linkname pprof_makeProfStack runtime.pprof_makeProfStackfunc () []uintptr
The pages are generated with Golds v0.7.6. (GOOS=linux GOARCH=amd64)